Dergi makalesi Açık Erişim
Kemali, Serap; Yesilce, Ilknur; Adilov, Gabil
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/77353</identifier>
<creators>
<creator>
<creatorName>Kemali, Serap</creatorName>
<givenName>Serap</givenName>
<familyName>Kemali</familyName>
<affiliation>Akdeniz Univ, Vocat Sch Tech Sci, Dept Math, Antayla, Turkey</affiliation>
</creator>
<creator>
<creatorName>Yesilce, Ilknur</creatorName>
<givenName>Ilknur</givenName>
<familyName>Yesilce</familyName>
<affiliation>Mersin Univ, Sci & Letters Fac, Dept Math, Mersin, Turkey</affiliation>
</creator>
<creator>
<creatorName>Adilov, Gabil</creatorName>
<givenName>Gabil</givenName>
<familyName>Adilov</familyName>
<affiliation>Akdeniz Univ, Fac Educ, Dept Math, TR-07058 Antalya, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>B-Convexity, B-1-Convexity, And Their Comparison</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2015</publicationYear>
<dates>
<date dateType="Issued">2015-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/77353</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1080/01630563.2014.970641</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">A subset U of R-+(n) is B-convex if for all x, y is an element of U and all lambda is an element of [0, 1] one has lambda x proves y is an element of U. These sets were introduced and studied by Briec, Horvath, Rubinov and Adilov [7, 8, 10]. A subset V of is B-1-convex if for all x, y is an element of V and all lambda is an element of [1, infinity) one has lambda x perpendicular to y is an element of V. This concept is defined and studied by Adilov, Briec, and Yesilce. In this work, B-convex and B-1-convex functions are defined and some fundamental theorems about these functions are proved, additionally some important properties of B-convex and B-1-convex sets are compared then the construction of sets is described with graphics.</description>
</descriptions>
</resource>
| Görüntülenme | 46 |
| İndirme | 14 |
| Veri hacmi | 2.2 kB |
| Tekil görüntülenme | 46 |
| Tekil indirme | 12 |