Dergi makalesi Açık Erişim

CONFORMAL SEMI-INVARIANT RIEMANNIAN MAPS TO KAHLER MANIFOLDS

Akyol, Mehmet Akif; Sahin, Bayram


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/75519</identifier>
  <creators>
    <creator>
      <creatorName>Akyol, Mehmet Akif</creatorName>
      <givenName>Mehmet Akif</givenName>
      <familyName>Akyol</familyName>
      <affiliation>Bingol Univ, Fac Art &amp; Sci, Dept Math, TR-12000 Bingol, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Sahin, Bayram</creatorName>
      <givenName>Bayram</givenName>
      <familyName>Sahin</familyName>
      <affiliation>Ege Univ, Dept Math, TR-35100 Izmir, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Conformal Semi-Invariant Riemannian Maps To Kahler Manifolds</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/75519</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.33044/revuma.v60n2a12</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">As a generalization of CR-submanifolds and semi-invariant Riemannian maps, we introduce conformal semi-invariant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds. We give non-trivial examples, investigate the geometry of foliations, and obtain decomposition theorems by using the existence of conformal Riemannian maps. We also investigate the harmonicity of such maps and find necessary and sufficient conditions for conformal anti-invariant Riemannian maps to be totally geodesic.</description>
  </descriptions>
</resource>
59
8
görüntülenme
indirilme
Görüntülenme 59
İndirme 8
Veri hacmi 1.2 kB
Tekil görüntülenme 57
Tekil indirme 8

Alıntı yap