Dergi makalesi Açık Erişim

Quantum codes from codes over the ring F-q + alpha F-q

Guzeltepe, Murat; Sari, Mustafa


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/75263</identifier>
  <creators>
    <creator>
      <creatorName>Guzeltepe, Murat</creatorName>
      <givenName>Murat</givenName>
      <familyName>Guzeltepe</familyName>
      <affiliation>Sakarya Univ, Dept Math, TR-54187 Sakarya, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Sari, Mustafa</creatorName>
      <givenName>Mustafa</givenName>
      <familyName>Sari</familyName>
      <affiliation>Yildiz Tech Univ, Dept Math, Istanbul, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Quantum Codes From Codes Over The Ring F-Q + Alpha F-Q</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/75263</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s11128-019-2476-2</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">In this paper, we aim to obtain quantum error correcting codes from codes over a non-local ring R-q = F-q + alpha F-q. We first define a Gray map phi from R-q(n) to F-q(2n) preserving the Hermitian orthogonality in R-q(n) to both the Euclidean and trace-symplectic orthogonality in F-q(2n). We characterize the structure of cyclic codes and their duals over R-q and derive the condition of existence for cyclic codes containing their duals over R-q. By making use of the Gray map phi, we obtain two classes of q-ary quantum codes. We also determine the structure of additive cyclic codes over R-p2 and give a condition for these codes to be self-orthogonal with respect to Hermitian inner product. By defining and making use of a new map delta, we construct a family of p-ary quantum codes.</description>
  </descriptions>
</resource>
67
17
görüntülenme
indirilme
Görüntülenme 67
İndirme 17
Veri hacmi 2.2 kB
Tekil görüntülenme 64
Tekil indirme 17

Alıntı yap