Dergi makalesi Açık Erişim

Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images

Sari, Can Taylan; Gunduz-Demir, Cigdem


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">IEEE TRANSACTIONS ON MEDICAL IMAGING</subfield>
    <subfield code="v">38</subfield>
    <subfield code="n">5</subfield>
    <subfield code="c">1139-1149</subfield>
  </datafield>
  <controlfield tag="001">74947</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Histopathological examination is today's gold standard for cancer diagnosis. However, this task is time consuming and prone to errors as it requires a detailed visual inspection and interpretation of a pathologist. Digital pathology aims at alleviating these problems by providing computerized methods that quantitatively analyze digitized histopathological tissue images. The performance of these methods mainly relies on the features that they use, and thus, their success strictly depends on the ability of these features by successfully quantifying the histopathology domain. With this motivation, this paper presents a new unsupervised feature extractor for effective representation and classification of histopathological tissue images. This feature extractor has three main contributions: First, it proposes to identify salient subregions in an image, based on domain-specific prior knowledge, and to quantify the image by employing only the characteristics of these subregions instead of considering the characteristics of all image locations. Second, it introduces a new deep learning-based technique that quantizes the salient subregions by extracting a set of features directly learned on image data and uses the distribution of these quantizations for image representation and classification. To this end, the proposed deep learning-based technique constructs a deep belief network of the restricted Boltzmann machines (RBMs), defines the activation values of the hidden unit nodes in the final RBM as the features, and learns the quantizations by clustering these features in an unsupervised way. Third, this extractor is the first example for successfully using the restricted Boltzmann machines in the domain of histopathological image analysis. Our experiments on microscopic colon tissue images reveal that the proposed feature extractor is effective to obtain more accurate classification results compared to its counterparts.</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Gunduz-Demir, Cigdem</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Bilkent Univ, Dept Comp Engn, TR-06800 Ankara, Turkey</subfield>
    <subfield code="a">Sari, Can Taylan</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-01</subfield>
  </datafield>
  <controlfield tag="005">20210316041827.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:74947</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:1c42af3cfd0fe97ec1ad646e1fc48bcd</subfield>
    <subfield code="s">202</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/74947/files/bib-a2dfb55a-24e4-4382-83f6-846f65c48cda.txt</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TMI.2018.2879369</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
36
3
görüntülenme
indirilme
Görüntülenme 36
İndirme 3
Veri hacmi 606 Bytes
Tekil görüntülenme 32
Tekil indirme 3

Alıntı yap