Dergi makalesi Açık Erişim

Parametrizing hydrogen bond interactions in dissipative particle dynamics simulations: The case of water, methanol and their binary mixtures

Kacar, Gokhan; de With, Gijsbertus


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">de With, Gijsbertus</subfield>
    <subfield code="u">Eindhoven Univ Technol, Fac Chem Engn &amp; Chem, Lab Phys Chem, Eindhoven, Netherlands</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">JOURNAL OF MOLECULAR LIQUIDS</subfield>
    <subfield code="v">302</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.molliq.2020.112581</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Parametrizing hydrogen bond interactions in dissipative particle dynamics simulations: The case of water, methanol and their binary mixtures</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Kacar, Gokhan</subfield>
    <subfield code="u">Trakya Univ, Fac Engn, Dept Genet &amp; Bioengn, TR-22030 Edirne, Turkey</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:6951</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-01</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/6951/files/bib-7d73dccb-10e9-48a6-970c-bdf1223c8b01.txt</subfield>
    <subfield code="z">md5:5668b60315d75ae28bc933663ac9f317</subfield>
    <subfield code="s">214</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <controlfield tag="005">20210315063233.0</controlfield>
  <controlfield tag="001">6951</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Simulating water has always been a challenge. Due to the intrinsic hydrogen bond interactions, water exhibits structural properties, such as a tetrahedral coordination resulting in a specific Radial Distribution Function (RDF), which are not trivial to predict computationally. In this paper, we attempt to use coarse-grained Dissipative Particle Dynamics (DPD) simulations to parameterize the hydrogen bond interactions without violating the classical DPD framework. We model the hydrogen bond interactions by incorporating a Morse potential, where the parameters are computed by taking the experimental enthalpy of evaporation and hydrogen bond distances as reference. We show that with the proposed procedure the RDF, the coordination number, the isothermal compressibility, and the three-body angular distributions (to demonstrate the tetrahedral structure) of pure water are predicted in great extent compatible with the experiments. To test the applicability of the procedure to mixtures, we simulated pure methanol and methanol/water mixtures at different molar fractions. The predicted RDF profiles for methanol-methanol, methanol-water and water-water represent the characteristic experimental RDF behavior. Moreover, the calculated negative excess volumes as a function of mole fraction compare quite well with the experimentally observed excess volumes. Our findings motivate the further development and use of DPD simulations in modeling hydrogen bond interactions, which are crucial not only in water (or alcohols), but in more complex systems such as biomolecules, proteins or biopolymers. (C) 2020 Elsevier B.V. All rights reserved.</subfield>
  </datafield>
</record>
16
5
görüntülenme
indirilme
Görüntülenme 16
İndirme 5
Veri hacmi 1.1 kB
Tekil görüntülenme 14
Tekil indirme 5

Alıntı yap