Konferans bildirisi Açık Erişim

Waste Not: Meta-Embedding of Word and Context Vectors

Degirmenci, Selin; Gerek, Aydin; Ganiz, Murat Can


JSON

{
  "conceptrecid": "68990", 
  "created": "2021-03-16T02:55:44.926251+00:00", 
  "doi": "10.1007/978-3-030-23281-8_35", 
  "files": [
    {
      "bucket": "5dfb164f-3aa3-4cc3-97bf-f2d7c964af3e", 
      "checksum": "md5:cf9b014298a06ef4b655bddbc09b965c", 
      "key": "bib-25a74055-4dd9-4f9c-8285-06384aa7ecdf.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/5dfb164f-3aa3-4cc3-97bf-f2d7c964af3e/bib-25a74055-4dd9-4f9c-8285-06384aa7ecdf.txt"
      }, 
      "size": 164, 
      "type": "txt"
    }
  ], 
  "id": 68991, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1007/978-3-030-23281-8_35.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/5dfb164f-3aa3-4cc3-97bf-f2d7c964af3e", 
    "doi": "https://doi.org/10.1007/978-3-030-23281-8_35", 
    "html": "https://aperta.ulakbim.gov.tr/record/68991", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/68991", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/68991"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Marmara Univ, TR-34730 Istanbul, Turkey", 
        "name": "Degirmenci, Selin"
      }, 
      {
        "affiliation": "Marmara Univ, TR-34730 Istanbul, Turkey", 
        "name": "Gerek, Aydin"
      }, 
      {
        "affiliation": "Marmara Univ, TR-34730 Istanbul, Turkey", 
        "name": "Ganiz, Murat Can"
      }
    ], 
    "description": "The word2vec and fastText models train two vectors per word: a word and a context vector. Typically the context vectors are discarded after training, even though they may contain useful information for different NLP tasks. Therefore we combine word and context vectors in the framework of meta-embeddings. Our experiments show performance increases at several NLP tasks such as text classification, semantic similarity, and analogy. In conclusion, this approach can be used to increase performance at downstream tasks while requiring minimal additional computational resources.", 
    "doi": "10.1007/978-3-030-23281-8_35", 
    "has_grant": false, 
    "license": {
      "id": "cc-by"
    }, 
    "meeting": {
      "title": "NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2019)"
    }, 
    "publication_date": "2019-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "68991"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "68990"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "conferencepaper", 
      "title": "Konferans bildirisi", 
      "type": "publication"
    }, 
    "title": "Waste Not: Meta-Embedding of Word and Context Vectors"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 6.0, 
    "unique_downloads": 6.0, 
    "unique_views": 36.0, 
    "version_downloads": 6.0, 
    "version_unique_downloads": 6.0, 
    "version_unique_views": 36.0, 
    "version_views": 37.0, 
    "version_volume": 984.0, 
    "views": 37.0, 
    "volume": 984.0
  }, 
  "updated": "2021-03-16T02:55:44.990082+00:00"
}
37
6
görüntülenme
indirilme
Görüntülenme 37
İndirme 6
Veri hacmi 984 Bytes
Tekil görüntülenme 36
Tekil indirme 6

Alıntı yap