Dergi makalesi Açık Erişim
Pinar, Zehra; Dutta, Abhishek; Kassemi, Mohammed; Ozis, Turgut
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/67575</identifier> <creators> <creator> <creatorName>Pinar, Zehra</creatorName> <givenName>Zehra</givenName> <familyName>Pinar</familyName> <affiliation>Namik Kemal Univ, Fac Arts & Sci, Dept Math, TR-59030 Merkez Tekirdag, Turkey</affiliation> </creator> <creator> <creatorName>Dutta, Abhishek</creatorName> <givenName>Abhishek</givenName> <familyName>Dutta</familyName> <affiliation>Katholieke Univ Leuven, Dept Mat Kunde, Kasteelpk Arenberg 44,Bus 2450, B-3001 Heverlee, Belgium</affiliation> </creator> <creator> <creatorName>Kassemi, Mohammed</creatorName> <givenName>Mohammed</givenName> <familyName>Kassemi</familyName> <affiliation>NASA, NCSER, Glenn Res Ctr, 21000 Brookpk Rd,Mailstop 110-3, Cleveland, OH 44135 USA</affiliation> </creator> <creator> <creatorName>Ozis, Turgut</creatorName> <givenName>Turgut</givenName> <familyName>Ozis</familyName> <affiliation>Ege Univ, Dept Math, Fac Sci, TR-35100 Bornova, Turkey</affiliation> </creator> </creators> <titles> <title>An Improved Analytical Solution Of Population Balance Equation Involving Aggregation And Breakage Via Fibonacci And Lucas Approximation Method</title> </titles> <publisher>Aperta</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/67575</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1515/ijcre-2018-0096</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">This study presents a novel analytical solution for the Population Balance Equation (PBE) involving particulate aggregation and breakage by making use of the appropriate solution(s) of the associated complementary equation of a nonlinear PBE via Fibonacci and Lucas Approximation Method (FLAM). In a previously related study, travelling wave solutions of the complementary equation of the PBE using Auxiliary Equation Method (AEM) with sixth order nonlinearity was taken to be analogous to the description of the dynamic behavior of the particulate processes. However, in this study, the class of auxiliary equations is extended to Fibonacci and Lucas type equations with given transformations to solve the PBE. As a proof-of-concept for the novel approach, the general case when the number of particles varies with respect to time is chosen. Three cases i.e. balanced aggregation and breakage and when either aggregation or breakage can dominate are selected and solved for their corresponding analytical solution and compared with the available analytical approaches. The solution obtained using FLAM is found to be closer to the exact solution and requiring lesser parameters compared to the AEM and thereby being a more robust and reliable framework.</description> </descriptions> </resource>
Görüntülenme | 29 |
İndirme | 10 |
Veri hacmi | 2.6 kB |
Tekil görüntülenme | 27 |
Tekil indirme | 9 |