Dergi makalesi Açık Erişim
Cevik, A. Sinan; Das, Kinkar Ch.; Cangul, I. Naci; Maden, A. Dilek
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/66943</identifier>
<creators>
<creator>
<creatorName>Cevik, A. Sinan</creatorName>
<givenName>A. Sinan</givenName>
<familyName>Cevik</familyName>
<affiliation>Selcuk Univ, Fac Sci, Dept Math, TR-42075 Konya, Turkey</affiliation>
</creator>
<creator>
<creatorName>Das, Kinkar Ch.</creatorName>
<givenName>Kinkar Ch.</givenName>
<familyName>Das</familyName>
<affiliation>Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea</affiliation>
</creator>
<creator>
<creatorName>Cangul, I. Naci</creatorName>
<givenName>I. Naci</givenName>
<familyName>Cangul</familyName>
<affiliation>Uludag Univ, Fac Art & Sci, Dept Math, TR-16059 Bursa, Turkey</affiliation>
</creator>
<creator>
<creatorName>Maden, A. Dilek</creatorName>
<givenName>A. Dilek</givenName>
<familyName>Maden</familyName>
</creator>
</creators>
<titles>
<title>Minimality Over Free Monoid Presentations</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2014</publicationYear>
<dates>
<date dateType="Issued">2014-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/66943</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.66942</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.66943</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">As a continues study of the paper [4], in here, we first state and prove the p-Cockcroft property (or, equivalently, efficiency) for a presentation, say PE, of the semi-direct product of a free abelian monoid rank two by a finite cyclic monoid. Then, in a separate section, we present sufficient conditions on a special case for PE to be minimal whilst it is inefficient.</description>
</descriptions>
</resource>
| Görüntülenme | 53 |
| İndirme | 14 |
| Veri hacmi | 2.2 kB |
| Tekil görüntülenme | 51 |
| Tekil indirme | 14 |