Dergi makalesi Açık Erişim
Cevik, A. Sinan; Das, Kinkar Ch.; Cangul, I. Naci; Maden, A. Dilek
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/66943</identifier> <creators> <creator> <creatorName>Cevik, A. Sinan</creatorName> <givenName>A. Sinan</givenName> <familyName>Cevik</familyName> <affiliation>Selcuk Univ, Fac Sci, Dept Math, TR-42075 Konya, Turkey</affiliation> </creator> <creator> <creatorName>Das, Kinkar Ch.</creatorName> <givenName>Kinkar Ch.</givenName> <familyName>Das</familyName> <affiliation>Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea</affiliation> </creator> <creator> <creatorName>Cangul, I. Naci</creatorName> <givenName>I. Naci</givenName> <familyName>Cangul</familyName> <affiliation>Uludag Univ, Fac Art & Sci, Dept Math, TR-16059 Bursa, Turkey</affiliation> </creator> <creator> <creatorName>Maden, A. Dilek</creatorName> <givenName>A. Dilek</givenName> <familyName>Maden</familyName> </creator> </creators> <titles> <title>Minimality Over Free Monoid Presentations</title> </titles> <publisher>Aperta</publisher> <publicationYear>2014</publicationYear> <dates> <date dateType="Issued">2014-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/66943</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.66942</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.66943</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">As a continues study of the paper [4], in here, we first state and prove the p-Cockcroft property (or, equivalently, efficiency) for a presentation, say PE, of the semi-direct product of a free abelian monoid rank two by a finite cyclic monoid. Then, in a separate section, we present sufficient conditions on a special case for PE to be minimal whilst it is inefficient.</description> </descriptions> </resource>
Görüntülenme | 33 |
İndirme | 10 |
Veri hacmi | 1.6 kB |
Tekil görüntülenme | 32 |
Tekil indirme | 10 |