Konferans bildirisi Açık Erişim

Learning to Rank for Joy

Orellana-Rodriguez, Claudia; Nejdl, Wolfgang; Diaz-Aviles, Ernesto; Altingovde, Ismail Sengor


Citation Style Language JSON

{
  "DOI": "10.1145/2567948.2576961", 
  "abstract": "User-generated content is a growing source of valuable information and its analysis can lead to a better understanding of the users needs and trends. In this paper, we leverage user feedback about YouTube videos for the task of affective video ranking. To this end, we follow a learning to rank approach, which allows us to compare the performance of different sets of features when the ranking task goes beyond mere relevance and requires an affective understanding of the videos. Our results show that, while basic video features, such as title and tags, lead to effective rankings in an affective-less setup, they do not perform as good when dealing with an affective ranking task.", 
  "author": [
    {
      "family": "Orellana-Rodriguez", 
      "given": " Claudia"
    }, 
    {
      "family": "Nejdl", 
      "given": " Wolfgang"
    }, 
    {
      "family": "Diaz-Aviles", 
      "given": " Ernesto"
    }, 
    {
      "family": "Altingovde", 
      "given": " Ismail Sengor"
    }
  ], 
  "id": "63085", 
  "issued": {
    "date-parts": [
      [
        2014, 
        1, 
        1
      ]
    ]
  }, 
  "title": "Learning to Rank for Joy", 
  "type": "paper-conference"
}
37
7
görüntülenme
indirilme
Görüntülenme 37
İndirme 7
Veri hacmi 1.3 kB
Tekil görüntülenme 36
Tekil indirme 7

Alıntı yap