Dergi makalesi Açık Erişim
Guengoer, A. Dilek Maden; Cevik, A. Sinan; Habibi, Nader
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/62369</identifier>
<creators>
<creator>
<creatorName>Guengoer, A. Dilek Maden</creatorName>
<givenName>A. Dilek Maden</givenName>
<familyName>Guengoer</familyName>
<affiliation>Selcuk Univ, Fac Sci, Dept Math, TR-42075 Konya, Turkey</affiliation>
</creator>
<creator>
<creatorName>Cevik, A. Sinan</creatorName>
<givenName>A. Sinan</givenName>
<familyName>Cevik</familyName>
<affiliation>Selcuk Univ, Fac Sci, Dept Math, TR-42075 Konya, Turkey</affiliation>
</creator>
<creator>
<creatorName>Habibi, Nader</creatorName>
<givenName>Nader</givenName>
<familyName>Habibi</familyName>
<affiliation>Univ Zanjan, Fac Sci, Dept Math, Zanjan, Iran</affiliation>
</creator>
</creators>
<titles>
<title>New Bounds For The Spread Of The Signless Laplacian Spectrum</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2014</publicationYear>
<dates>
<date dateType="Issued">2014-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/62369</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.7153/mia-17-23</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">The spread of the singless Laplacian of a simple graph G is defined as SQ(G) = mu(1)(G) - mu(n)(G), where mu(1)(G) and mu(n)(G) are the maximum and minimum eigenvalues of the signless Laplacian matrix of G, respectively. In this paper, we will present some new lower and upper bounds for SQ(G) in terms of clique and independence numbers. In the final section, as an application of the theory obtained in here, we will also show some new upper bounds for the spread of the singless Laplacian of tensor products of any two simple graphs.</description>
</descriptions>
</resource>
| Görüntülenme | 58 |
| İndirme | 11 |
| Veri hacmi | 1.8 kB |
| Tekil görüntülenme | 57 |
| Tekil indirme | 11 |