Dergi makalesi Açık Erişim

NEW BOUNDS FOR THE SPREAD OF THE SIGNLESS LAPLACIAN SPECTRUM

   Guengoer, A. Dilek Maden; Cevik, A. Sinan; Habibi, Nader

The spread of the singless Laplacian of a simple graph G is defined as SQ(G) = mu(1)(G) - mu(n)(G), where mu(1)(G) and mu(n)(G) are the maximum and minimum eigenvalues of the signless Laplacian matrix of G, respectively. In this paper, we will present some new lower and upper bounds for SQ(G) in terms of clique and independence numbers. In the final section, as an application of the theory obtained in here, we will also show some new upper bounds for the spread of the singless Laplacian of tensor products of any two simple graphs.

Dosyalar (164 Bytes)
Dosya adı Boyutu
bib-d29dd1b0-ba53-449a-a60f-fed18eafde01.txt
md5:d8be8efdc13cd51d0d3a474f0b392846
164 Bytes İndir
58
11
görüntülenme
indirilme
Görüntülenme 58
İndirme 11
Veri hacmi 1.8 kB
Tekil görüntülenme 57
Tekil indirme 11

Alıntı yap