Dergi makalesi Açık Erişim
Xu, Ke Xiang; Das, Kinkar Ch.; Maden, Ayse Dilek
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/60643</identifier> <creators> <creator> <creatorName>Xu, Ke Xiang</creatorName> <givenName>Ke Xiang</givenName> <familyName>Xu</familyName> <affiliation>Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China</affiliation> </creator> <creator> <creatorName>Das, Kinkar Ch.</creatorName> <givenName>Kinkar Ch.</givenName> <familyName>Das</familyName> <affiliation>Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea</affiliation> </creator> <creator> <creatorName>Maden, Ayse Dilek</creatorName> <givenName>Ayse Dilek</givenName> <familyName>Maden</familyName> <affiliation>Sel cuk Univ, Fac Sci, Dept Math, TR-42075 Campus, Konya, Turkey</affiliation> </creator> </creators> <titles> <title>On A Novel Eccentricity-Based Invariant Of A Graph</title> </titles> <publisher>Aperta</publisher> <publicationYear>2016</publicationYear> <dates> <date dateType="Issued">2016-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/60643</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s10114-016-5518-z</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">In this paper, for the purpose of measuring the non-self-centrality extent of non-selfcentered graphs, a novel eccentricity-based invariant, named as non-self-centrality number (NSC number for short), of a graph G is defined as follows: N(G) = Sigma(vi), (vj is an element of V(G)) vertical bar e(i) - e(j)vertical bar where the summation goes over all the unordered pairs of vertices in G and e(i) is the eccentricity of vertex vi in G, whereas the invariant will be called third Zagreb eccentricity index if the summation only goes over the adjacent vertex pairs of graph G. In this paper, we determine the lower and upper bounds on N(G) and characterize the corresponding graphs at which the lower and upper bounds are attained. Finally we propose some attractive research topics for this new invariant of graphs.</description> </descriptions> </resource>
Görüntülenme | 38 |
İndirme | 7 |
Veri hacmi | 1.0 kB |
Tekil görüntülenme | 35 |
Tekil indirme | 7 |