Dergi makalesi Açık Erişim

On Cauchy problems with Caputo Hadamard fractional derivatives

Adjabi, Y.; Jarad, Fahd; Baleanu, D.; Abdeljawad, T.


JSON-LD (schema.org)

{
  "@context": "https://schema.org/", 
  "@id": 60571, 
  "@type": "ScholarlyArticle", 
  "creator": [
    {
      "@type": "Person", 
      "affiliation": "Univ Mhamed Bougra, Dept Math, UMBB, Boumerdes, Algeria", 
      "name": "Adjabi, Y."
    }, 
    {
      "@type": "Person", 
      "affiliation": "Univ Turkish Aeronaut Assoc, Dept Logist Management, Fac Management, TR-06790 Ankara, Turkey", 
      "name": "Jarad, Fahd"
    }, 
    {
      "@type": "Person", 
      "name": "Baleanu, D."
    }, 
    {
      "@type": "Person", 
      "affiliation": "Prince Sultan Univ, Dept Math & Phys Sci, POB 66833, Riyadh 11586, Saudi Arabia", 
      "name": "Abdeljawad, T."
    }
  ], 
  "datePublished": "2016-01-01", 
  "description": "The current work is motivated by the so-called Caputo-type modification of the Hadamard or Caputo Hadamard fractional derivative discussed in [4]. The main aim of this paper is to study Cauchy problems for a differential equation with a left Caputo Hadamard fractional derivative in spaces of continuously differentiable functions. The equivalence of this problem to a nonlinear Volterra type integral equation of the second kind is shown. On the basis of the obtained results, the existence and uniqueness of the solution to the considered Cauchy problem is proved by using Banach's fixed point theorem. Finally, two examples are provided to explain the applications of the results.", 
  "headline": "On Cauchy problems with Caputo Hadamard fractional derivatives", 
  "identifier": 60571, 
  "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", 
  "license": "http://www.opendefinition.org/licenses/cc-by", 
  "name": "On Cauchy problems with Caputo Hadamard fractional derivatives", 
  "url": "https://aperta.ulakbim.gov.tr/record/60571"
}
52
10
görüntülenme
indirilme
Görüntülenme 52
İndirme 10
Veri hacmi 1.9 kB
Tekil görüntülenme 49
Tekil indirme 10

Alıntı yap