Dergi makalesi Açık Erişim

Effective resistances and Kirchhoff index of ladder graphs

Cinkir, Zubeyir


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/59187</identifier>
  <creators>
    <creator>
      <creatorName>Cinkir, Zubeyir</creatorName>
      <givenName>Zubeyir</givenName>
      <familyName>Cinkir</familyName>
      <affiliation>Abdullah Gul Univ, Dept Ind Engn, Kayseri, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Effective Resistances And Kirchhoff Index Of Ladder Graphs</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2016</publicationYear>
  <dates>
    <date dateType="Issued">2016-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/59187</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s10910-016-0597-8</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">We explicitly compute the effective resistances between any two vertices of a ladder graph by using circuit reductions. Using our findings, we obtain explicit formulas for Kirchhoff index of a ladder graph. Comparing our formula for Kirchhoff index and previous results in the literature, we obtain an explicit sum formula involving trigonometric functions. We also expressed our formulas in terms of certain generalized Fibonacci numbers that are the values of the Chebyshev polynomials of the second kind at 2.</description>
  </descriptions>
</resource>
59
12
görüntülenme
indirilme
Görüntülenme 59
İndirme 12
Veri hacmi 1.5 kB
Tekil görüntülenme 54
Tekil indirme 12

Alıntı yap