Dergi makalesi Açık Erişim

Sparse polynomial multiplication for lattice-based cryptography with small complexity

Akleylek, Sedat; Alkim, Erdem; Tok, Zaliha Yuce


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/58797</identifier>
  <creators>
    <creator>
      <creatorName>Akleylek, Sedat</creatorName>
      <givenName>Sedat</givenName>
      <familyName>Akleylek</familyName>
    </creator>
    <creator>
      <creatorName>Alkim, Erdem</creatorName>
      <givenName>Erdem</givenName>
      <familyName>Alkim</familyName>
      <affiliation>Ege Univ, Dept Math, Izmir, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Tok, Zaliha Yuce</creatorName>
      <givenName>Zaliha Yuce</givenName>
      <familyName>Tok</familyName>
      <affiliation>Middle E Tech Univ, Inst Appl Math, TR-06531 Ankara, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Sparse Polynomial Multiplication For Lattice-Based Cryptography With Small Complexity</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2016</publicationYear>
  <dates>
    <date dateType="Issued">2016-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/58797</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s11227-015-1570-1</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">In this paper, we propose efficient modular polynomial multiplication methods with applications in lattice-based cryptography. We provide a sparse polynomial multiplication to be used in the quotient ring (Z/pZ)[x]/(x(n) + 1). Then, we modify this algorithm with sliding window method for sparse polynomial multiplication. Moreover, the proposed methods are independent of the choice of reduction polynomial. We also implement the proposed algorithms on the Core i5-3210M CPU platform and compare them with number theoretic transform multiplication. According to the experimental results, we speed up the multiplication operation in (Z/pZ)[x]/(x(n) + 1) at least 80% and improve the performance of the signature generation and verification process of GLP scheme significantly.</description>
  </descriptions>
</resource>
69
16
görüntülenme
indirilme
Görüntülenme 69
İndirme 16
Veri hacmi 2.7 kB
Tekil görüntülenme 64
Tekil indirme 16

Alıntı yap