Dergi makalesi Açık Erişim
Belotti, Pietro; Soylu, Banu; Wiecek, Margaret M.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/58287</identifier> <creators> <creator> <creatorName>Belotti, Pietro</creatorName> <givenName>Pietro</givenName> <familyName>Belotti</familyName> <affiliation>FICO, Xpress Optimizer Team, Birmingham B37 7GN, W Midlands, England</affiliation> </creator> <creator> <creatorName>Soylu, Banu</creatorName> <givenName>Banu</givenName> <familyName>Soylu</familyName> <affiliation>Erciyes Univ, Dept Ind Engn, TR-38039 Kayseri, Turkey</affiliation> </creator> <creator> <creatorName>Wiecek, Margaret M.</creatorName> <givenName>Margaret M.</givenName> <familyName>Wiecek</familyName> <affiliation>Clemson Univ, Dept Math Sci, Clemson, SC 29630 USA</affiliation> </creator> </creators> <titles> <title>Fathoming Rules For Biobjective Mixed Integer Linear Programs: Review And Extensions</title> </titles> <publisher>Aperta</publisher> <publicationYear>2016</publicationYear> <dates> <date dateType="Issued">2016-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/58287</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.disopt.2016.09.003</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">We consider the class of biobjective mixed integer linear programs (BOMILPs). We review fathoming rules for general BOMILPs and present them in a unified manner. We then propose new fathoming rules that rely on solving specially designed LPs, hence making no assumption on the type of problem and only using polynomial-time algorithms. We describe an enhancement for carrying out these rules by performing a limited number of pivot operations on an LP, and then we provide insight that helps to make these rules even more efficient by either focusing on a smaller number of feasible solutions or by resorting to heuristics that limit the number of LPs solved. (C) 2016 Elsevier B.V. All rights reserved.</description> </descriptions> </resource>
Görüntülenme | 40 |
İndirme | 7 |
Veri hacmi | 1.2 kB |
Tekil görüntülenme | 38 |
Tekil indirme | 7 |