Dergi makalesi Açık Erişim
Belotti, Pietro; Soylu, Banu; Wiecek, Margaret M.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/58287</identifier>
<creators>
<creator>
<creatorName>Belotti, Pietro</creatorName>
<givenName>Pietro</givenName>
<familyName>Belotti</familyName>
<affiliation>FICO, Xpress Optimizer Team, Birmingham B37 7GN, W Midlands, England</affiliation>
</creator>
<creator>
<creatorName>Soylu, Banu</creatorName>
<givenName>Banu</givenName>
<familyName>Soylu</familyName>
<affiliation>Erciyes Univ, Dept Ind Engn, TR-38039 Kayseri, Turkey</affiliation>
</creator>
<creator>
<creatorName>Wiecek, Margaret M.</creatorName>
<givenName>Margaret M.</givenName>
<familyName>Wiecek</familyName>
<affiliation>Clemson Univ, Dept Math Sci, Clemson, SC 29630 USA</affiliation>
</creator>
</creators>
<titles>
<title>Fathoming Rules For Biobjective Mixed Integer Linear Programs: Review And Extensions</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2016</publicationYear>
<dates>
<date dateType="Issued">2016-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/58287</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.disopt.2016.09.003</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">We consider the class of biobjective mixed integer linear programs (BOMILPs). We review fathoming rules for general BOMILPs and present them in a unified manner. We then propose new fathoming rules that rely on solving specially designed LPs, hence making no assumption on the type of problem and only using polynomial-time algorithms. We describe an enhancement for carrying out these rules by performing a limited number of pivot operations on an LP, and then we provide insight that helps to make these rules even more efficient by either focusing on a smaller number of feasible solutions or by resorting to heuristics that limit the number of LPs solved. (C) 2016 Elsevier B.V. All rights reserved.</description>
</descriptions>
</resource>
| Görüntülenme | 50 |
| İndirme | 9 |
| Veri hacmi | 1.5 kB |
| Tekil görüntülenme | 48 |
| Tekil indirme | 9 |