Dergi makalesi Açık Erişim
Chen, Huanyin; Kose, H.; Kurtulmaz, Y.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/56359</identifier>
<creators>
<creator>
<creatorName>Chen, Huanyin</creatorName>
<givenName>Huanyin</givenName>
<familyName>Chen</familyName>
<affiliation>Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China</affiliation>
</creator>
<creator>
<creatorName>Kose, H.</creatorName>
<givenName>H.</givenName>
<familyName>Kose</familyName>
<affiliation>Ahi Evran Univ, Dept Math, Kirsehir, Turkey</affiliation>
</creator>
<creator>
<creatorName>Kurtulmaz, Y.</creatorName>
<givenName>Y.</givenName>
<familyName>Kurtulmaz</familyName>
<affiliation>Bilkent Univ, Dept Math, Ankara, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Factorizations Of Matrices Over Projective-Free Rings</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2016</publicationYear>
<dates>
<date dateType="Issued">2016-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/56359</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S1005386716000043</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">An element of a ring R is called strongly J(#)-clean provided that it can be written as the sum of an idempotent and an element in J(#)(R) that commute. In this paper, we characterize the strong J(#)-cleanness of matrices over projective-free rings. This extends many known results on strongly clean matrices over commutative local rings.</description>
</descriptions>
</resource>
| Görüntülenme | 85 |
| İndirme | 8 |
| Veri hacmi | 1.0 kB |
| Tekil görüntülenme | 82 |
| Tekil indirme | 8 |