Dergi makalesi Açık Erişim

Factorizations of Matrices over Projective-free Rings

Chen, Huanyin; Kose, H.; Kurtulmaz, Y.


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/56359</identifier>
  <creators>
    <creator>
      <creatorName>Chen, Huanyin</creatorName>
      <givenName>Huanyin</givenName>
      <familyName>Chen</familyName>
      <affiliation>Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China</affiliation>
    </creator>
    <creator>
      <creatorName>Kose, H.</creatorName>
      <givenName>H.</givenName>
      <familyName>Kose</familyName>
      <affiliation>Ahi Evran Univ, Dept Math, Kirsehir, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Kurtulmaz, Y.</creatorName>
      <givenName>Y.</givenName>
      <familyName>Kurtulmaz</familyName>
      <affiliation>Bilkent Univ, Dept Math, Ankara, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Factorizations Of Matrices Over Projective-Free Rings</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2016</publicationYear>
  <dates>
    <date dateType="Issued">2016-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/56359</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S1005386716000043</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">An element of a ring R is called strongly J(#)-clean provided that it can be written as the sum of an idempotent and an element in J(#)(R) that commute. In this paper, we characterize the strong J(#)-cleanness of matrices over projective-free rings. This extends many known results on strongly clean matrices over commutative local rings.</description>
  </descriptions>
</resource>
46
5
görüntülenme
indirilme
Görüntülenme 46
İndirme 5
Veri hacmi 655 Bytes
Tekil görüntülenme 45
Tekil indirme 5

Alıntı yap