Dergi makalesi Açık Erişim
Chen, Huanyin; Kose, H.; Kurtulmaz, Y.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/56359</identifier> <creators> <creator> <creatorName>Chen, Huanyin</creatorName> <givenName>Huanyin</givenName> <familyName>Chen</familyName> <affiliation>Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China</affiliation> </creator> <creator> <creatorName>Kose, H.</creatorName> <givenName>H.</givenName> <familyName>Kose</familyName> <affiliation>Ahi Evran Univ, Dept Math, Kirsehir, Turkey</affiliation> </creator> <creator> <creatorName>Kurtulmaz, Y.</creatorName> <givenName>Y.</givenName> <familyName>Kurtulmaz</familyName> <affiliation>Bilkent Univ, Dept Math, Ankara, Turkey</affiliation> </creator> </creators> <titles> <title>Factorizations Of Matrices Over Projective-Free Rings</title> </titles> <publisher>Aperta</publisher> <publicationYear>2016</publicationYear> <dates> <date dateType="Issued">2016-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/56359</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S1005386716000043</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">An element of a ring R is called strongly J(#)-clean provided that it can be written as the sum of an idempotent and an element in J(#)(R) that commute. In this paper, we characterize the strong J(#)-cleanness of matrices over projective-free rings. This extends many known results on strongly clean matrices over commutative local rings.</description> </descriptions> </resource>
Görüntülenme | 46 |
İndirme | 5 |
Veri hacmi | 655 Bytes |
Tekil görüntülenme | 45 |
Tekil indirme | 5 |