Dergi makalesi Açık Erişim
Kutucu, H.; Nuriyeva, F.; Ugurlu, O.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/55933</identifier>
<creators>
<creator>
<creatorName>Kutucu, H.</creatorName>
<givenName>H.</givenName>
<familyName>Kutucu</familyName>
<affiliation>Karabuk Univ, Dept Comp Engn, Karabuk, Turkey</affiliation>
</creator>
<creator>
<creatorName>Nuriyeva, F.</creatorName>
<givenName>F.</givenName>
<familyName>Nuriyeva</familyName>
</creator>
<creator>
<creatorName>Ugurlu, O.</creatorName>
<givenName>O.</givenName>
<familyName>Ugurlu</familyName>
<affiliation>Ege Univ, Dept Math, Izmir, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>The Rainbow Connection Problem: Mathematical Formulations</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2016</publicationYear>
<dates>
<date dateType="Issued">2016-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/55933</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.55932</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.55933</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">The concept of rainbow connection was introduced by Chartrand et al. in 2008. The rainbow connection number, rc(G), of a connected graph G = (V, E) is the minimum number of colors needed to color the edges of E, so that each pair of the vertices in V is connected by at least one path in which no two edges are assigned the same color. The rainbow vertex-connection number, rvc(G), is the vertex version of this problem. In this paper, we introduce mixed integer programming models for both versions of the problem. We show the validity of the proposed models and test their efficiency using a nonlinear programming solver.</description>
</descriptions>
</resource>
| Görüntülenme | 73 |
| İndirme | 16 |
| Veri hacmi | 2.3 kB |
| Tekil görüntülenme | 58 |
| Tekil indirme | 15 |