Konferans bildirisi Açık Erişim
Aydin, Zafer; Uzut, Ommu Gulsum
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:zenodo.org:52193</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Protein secondary structure prediction is an important step in estimating the three dimensional structure of proteins. Among the many methods developed for predicting structural properties of proteins, hybrid classifiers and ensembles that combine predictions from several models are shown to improve the accuracy rates. In this paper, we train, optimize and combine a support vector machine, a deep convolutional neural field and a random forest in the second stage of a hybrid classifier for protein secondary structure prediction. We demonstrate that the overall accuracy of the proposed ensemble is comparable to the success rates of the state-of-the-art methods in the most difficult prediction setting and combining the selected models have the potential to further improve the accuracy of the base learners.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">conferencepaper</subfield>
</datafield>
<datafield tag="711" ind1=" " ind2=" ">
<subfield code="a">2017 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN)</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Aydin, Zafer</subfield>
<subfield code="u">Abdullah Gul Univ, Kayseri, Turkey</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:4d25200f91d2b38d4f67d3828b02b841</subfield>
<subfield code="s">192</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/52193/files/bib-35947d80-88fb-4447-b3d0-d9c7c40c0c99.txt</subfield>
</datafield>
<controlfield tag="005">20210315230638.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2017-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1109/CICN.2017.9</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Combining Classifiers for Protein Secondary Structure Prediction</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Uzut, Ommu Gulsum</subfield>
<subfield code="u">Mus Alparslan Univ, Mus, Turkey</subfield>
</datafield>
<controlfield tag="001">52193</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 31 |
| İndirme | 6 |
| Veri hacmi | 1.2 kB |
| Tekil görüntülenme | 26 |
| Tekil indirme | 6 |