Dergi makalesi Açık Erişim

Prediction of Antibiotic Interactions Using Descriptors Derived from Molecular Structure

Mason, Daniel J.; Stott, Ian; Ashenden, Stephanie; Weinstein, Zohar B.; Karakoc, Idil; Meral, Selin; Kuru, Nurdan; Bender, Andreas; Cokol, Murat


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="n">9</subfield>
    <subfield code="c">3902-3912</subfield>
    <subfield code="v">60</subfield>
    <subfield code="p">JOURNAL OF MEDICINAL CHEMISTRY</subfield>
  </datafield>
  <controlfield tag="005">20210315225519.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:51339</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Univ Cambridge, Dept Chem, Ctr Mol Informat, Cambridge CB2 1EW, England</subfield>
    <subfield code="a">Mason, Daniel J.</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Combination antibiotic therapies are clinically important in the fight against bacterial infections. However, the search space of drug combinations is large, making the identification of effective combinations a challenging task. Here, we present a computational framework that uses substructure profiles derived from the molecular structures of drugs and predicts antibiotic interactions. Using a previously published data set of 153 drug pairs, we showed that substructure profiles are useful in predicting synergy. We experimentally measured the interaction of 123 new drug pairs, as a prospective validation set for our approach, and identified 37 new synergistic pairs. Of the 12 pairs predicted to be synergistic, 10 were experimentally validated, corresponding to a 2.8-fold enrichment. Having thus validated our methodology, we produced a compendium of interaction predictions for all pairwise combinations among 100 antibiotics. Our methodology can make reliable antibiotic interaction predictions for any antibiotic pair within the applicability domain of the model since it solely requires chemical structures as an input.</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <controlfield tag="001">51339</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Prediction of Antibiotic Interactions Using Descriptors Derived from Molecular Structure</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-01-01</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Unilever Res Labs, Wirral CH63 3JW, Merseyside, England</subfield>
    <subfield code="a">Stott, Ian</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Univ Cambridge, Dept Chem, Ctr Mol Informat, Cambridge CB2 1EW, England</subfield>
    <subfield code="a">Ashenden, Stephanie</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Boston Univ, Sch Med, Boston, MA 02118 USA</subfield>
    <subfield code="a">Weinstein, Zohar B.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Sabanci Univ, Fac Engn &amp; Nat Sci, TR-34956 Istanbul, Turkey</subfield>
    <subfield code="a">Karakoc, Idil</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Sabanci Univ, Fac Engn &amp; Nat Sci, TR-34956 Istanbul, Turkey</subfield>
    <subfield code="a">Meral, Selin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Sabanci Univ, Fac Engn &amp; Nat Sci, TR-34956 Istanbul, Turkey</subfield>
    <subfield code="a">Kuru, Nurdan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Univ Cambridge, Dept Chem, Ctr Mol Informat, Cambridge CB2 1EW, England</subfield>
    <subfield code="a">Bender, Andreas</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Cokol, Murat</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/51339/files/bib-da4e6a2a-45a7-4f9b-b9b5-aa9168809b82.txt</subfield>
    <subfield code="s">255</subfield>
    <subfield code="z">md5:1d37e75b9e75d764c9d6a1aeabc65bfe</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1021/acs.jmedchem.7b00204</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
35
4
görüntülenme
indirilme
Görüntülenme 35
İndirme 4
Veri hacmi 1.0 kB
Tekil görüntülenme 34
Tekil indirme 4

Alıntı yap