Dergi makalesi Açık Erişim

Free storage basis conversion over finite fields

Akyildiz, Ersan; Harold, Ndangang Yampa; Sinak, Ahmet


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/48975</identifier>
  <creators>
    <creator>
      <creatorName>Akyildiz, Ersan</creatorName>
      <givenName>Ersan</givenName>
      <familyName>Akyildiz</familyName>
    </creator>
    <creator>
      <creatorName>Harold, Ndangang Yampa</creatorName>
      <givenName>Ndangang Yampa</givenName>
      <familyName>Harold</familyName>
      <affiliation>Middle East Techn Univ, Inst Appl Math, Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Sinak, Ahmet</creatorName>
      <givenName>Ahmet</givenName>
      <familyName>Sinak</familyName>
    </creator>
  </creators>
  <titles>
    <title>Free Storage Basis Conversion Over Finite Fields</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2017</publicationYear>
  <dates>
    <date dateType="Issued">2017-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/48975</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1503-84</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Representation of a field element plays a crucial role in the efficiency of field arithmetic. If an efficient representation of a field element in one basis exists, then field arithmetic in the hardware and/or software implementations becomes easy. Otherwise, a basis conversion to an efficient one is searched for easier arithmetic. However, this conversion often brings a storage problem for transition matrices associated with these bases. In this paper, we study this problem for conversion between normal and polynomial bases in the extension field F-qp over F-q where q = p(n). We construct transition matrices that are of a special form. This provides free storage basis conversion algorithms between normal and polynomial bases, which is crucial from the implementation point of view.</description>
  </descriptions>
</resource>
23
18
görüntülenme
indirilme
Görüntülenme 23
İndirme 18
Veri hacmi 2.5 MB
Tekil görüntülenme 22
Tekil indirme 17

Alıntı yap