Dergi makalesi Açık Erişim
Akyildiz, Ersan; Harold, Ndangang Yampa; Sinak, Ahmet
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/48975</identifier> <creators> <creator> <creatorName>Akyildiz, Ersan</creatorName> <givenName>Ersan</givenName> <familyName>Akyildiz</familyName> </creator> <creator> <creatorName>Harold, Ndangang Yampa</creatorName> <givenName>Ndangang Yampa</givenName> <familyName>Harold</familyName> <affiliation>Middle East Techn Univ, Inst Appl Math, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Sinak, Ahmet</creatorName> <givenName>Ahmet</givenName> <familyName>Sinak</familyName> </creator> </creators> <titles> <title>Free Storage Basis Conversion Over Finite Fields</title> </titles> <publisher>Aperta</publisher> <publicationYear>2017</publicationYear> <dates> <date dateType="Issued">2017-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/48975</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1503-84</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Representation of a field element plays a crucial role in the efficiency of field arithmetic. If an efficient representation of a field element in one basis exists, then field arithmetic in the hardware and/or software implementations becomes easy. Otherwise, a basis conversion to an efficient one is searched for easier arithmetic. However, this conversion often brings a storage problem for transition matrices associated with these bases. In this paper, we study this problem for conversion between normal and polynomial bases in the extension field F-qp over F-q where q = p(n). We construct transition matrices that are of a special form. This provides free storage basis conversion algorithms between normal and polynomial bases, which is crucial from the implementation point of view.</description> </descriptions> </resource>
Görüntülenme | 23 |
İndirme | 16 |
Veri hacmi | 2.2 MB |
Tekil görüntülenme | 22 |
Tekil indirme | 15 |