Dergi makalesi Açık Erişim
Akyildiz, Ersan; Harold, Ndangang Yampa; Sinak, Ahmet
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/48975</identifier>
<creators>
<creator>
<creatorName>Akyildiz, Ersan</creatorName>
<givenName>Ersan</givenName>
<familyName>Akyildiz</familyName>
</creator>
<creator>
<creatorName>Harold, Ndangang Yampa</creatorName>
<givenName>Ndangang Yampa</givenName>
<familyName>Harold</familyName>
<affiliation>Middle East Techn Univ, Inst Appl Math, Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Sinak, Ahmet</creatorName>
<givenName>Ahmet</givenName>
<familyName>Sinak</familyName>
</creator>
</creators>
<titles>
<title>Free Storage Basis Conversion Over Finite Fields</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2017</publicationYear>
<dates>
<date dateType="Issued">2017-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/48975</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1503-84</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Representation of a field element plays a crucial role in the efficiency of field arithmetic. If an efficient representation of a field element in one basis exists, then field arithmetic in the hardware and/or software implementations becomes easy. Otherwise, a basis conversion to an efficient one is searched for easier arithmetic. However, this conversion often brings a storage problem for transition matrices associated with these bases. In this paper, we study this problem for conversion between normal and polynomial bases in the extension field F-qp over F-q where q = p(n). We construct transition matrices that are of a special form. This provides free storage basis conversion algorithms between normal and polynomial bases, which is crucial from the implementation point of view.</description>
</descriptions>
</resource>
| Görüntülenme | 40 |
| İndirme | 25 |
| Veri hacmi | 3.5 MB |
| Tekil görüntülenme | 35 |
| Tekil indirme | 22 |