Dergi makalesi Açık Erişim

Affine inflation

Azri, Hemza; Demir, Durmus


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Azri, Hemza</dc:creator>
  <dc:creator>Demir, Durmus</dc:creator>
  <dc:date>2017-01-01</dc:date>
  <dc:description>Affine gravity, a gravity theory based on affine connection with no notion of metric, supports scalar field dynamics only if scalar fields have nonvanishing potential. The nonvanishing vacuum energy ensures that the cosmological constant is nonvanishing. It also ensures that the energy-momentum tensor of vacuum gives the dynamically generated metric tensor. We construct this affine setup and study primordial inflation in it. We study inflationary dynamics in affine gravity and general relativity, comparatively. We show that nonminimally coupled inflaton dynamics can be transformed into minimally coupled ones with a modified potential. We also show that there is one unique frame in affine gravity, as opposed to the Einstein and Jordan frames in general relativity. Future observations with higher accuracy may be able to test affine gravity.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/46687</dc:identifier>
  <dc:identifier>oai:zenodo.org:46687</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>PHYSICAL REVIEW D 95(12)</dc:source>
  <dc:title>Affine inflation</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
36
7
görüntülenme
indirilme
Görüntülenme 36
İndirme 7
Veri hacmi 511 Bytes
Tekil görüntülenme 34
Tekil indirme 7
Atıflar
  • Citation Indexes: 39
Okunma İstatistikleri
  • Readers: 13

Alıntı yap