Dergi makalesi Açık Erişim
Kilickaya, Mert; Akkus, Burak Kerim; Cakici, Ruket; Erdem, Aykut; Erdem, Erkut; Ikizler-Cinbis, Nazli
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/46249</identifier> <creators> <creator> <creatorName>Kilickaya, Mert</creatorName> <givenName>Mert</givenName> <familyName>Kilickaya</familyName> <affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Akkus, Burak Kerim</creatorName> <givenName>Burak Kerim</givenName> <familyName>Akkus</familyName> <affiliation>Middle East Tech Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Cakici, Ruket</creatorName> <givenName>Ruket</givenName> <familyName>Cakici</familyName> <affiliation>Middle East Tech Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Erdem, Aykut</creatorName> <givenName>Aykut</givenName> <familyName>Erdem</familyName> <affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Erdem, Erkut</creatorName> <givenName>Erkut</givenName> <familyName>Erdem</familyName> <affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Ikizler-Cinbis, Nazli</creatorName> <givenName>Nazli</givenName> <familyName>Ikizler-Cinbis</familyName> <affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> </creators> <titles> <title>Data-Driven Image Captioning Via Salient Region Discovery</title> </titles> <publisher>Aperta</publisher> <publicationYear>2017</publicationYear> <dates> <date dateType="Issued">2017-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/46249</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1049/iet-cvi.2016.0286</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">In the past few years, automatically generating descriptions for images has attracted a lot of attention in computer vision and natural language processing research. Among the existing approaches, data-driven methods have been proven to be highly effective. These methods compare the given image against a large set of training images to determine a set of relevant images, then generate a description using the associated captions. In this study, the authors propose to integrate an object-based semantic image representation into a deep features-based retrieval framework to select the relevant images. Moreover, they present a novel phrase selection paradigm and a sentence generation model which depends on a joint analysis of salient regions in the input and retrieved images within a clustering framework. The authors demonstrate the effectiveness of their proposed approach on Flickr8K and Flickr30K benchmark datasets and show that their model gives highly competitive results compared with the state-of-the-art models.</description> </descriptions> </resource>
Görüntülenme | 39 |
İndirme | 8 |
Veri hacmi | 1.5 kB |
Tekil görüntülenme | 38 |
Tekil indirme | 8 |