Dergi makalesi Açık Erişim
Arikan, Talha; Prodinger, Helmut
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/4605</identifier> <creators> <creator> <creatorName>Arikan, Talha</creatorName> <givenName>Talha</givenName> <familyName>Arikan</familyName> <affiliation>Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Prodinger, Helmut</creatorName> <givenName>Helmut</givenName> <familyName>Prodinger</familyName> <affiliation>Univ Stellenbosch, Dept Math, ZA-7602 Stellenbosch, South Africa</affiliation> </creator> </creators> <titles> <title>Evaluation Of Some Reciprocal Trigonometric Sums Via Partial Fraction Decomposition</title> </titles> <publisher>Aperta</publisher> <publicationYear>2020</publicationYear> <dates> <date dateType="Issued">2020-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/4605</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.4604</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.4605</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Recently, Melham computed some finite sums in which the denominator of the summand includes products of 'sine' or 'cosine'. In this paper, generalizations of the sums, which he studied in 2016, are presented, by allowing arbitrary factors in the denominator of the summand. Our approach uses the elementary technique of partial fraction decomposition. Furthermore, some of the sums, which he studied in 2017, are treated in the same style.</description> </descriptions> </resource>
Görüntülenme | 8 |
İndirme | 2 |
Veri hacmi | 320 Bytes |
Tekil görüntülenme | 7 |
Tekil indirme | 2 |