Konferans bildirisi Açık Erişim
Yousef, Malik; Khalifa, Waleed; Acar, Ilhan Erkin; Allmer, Jens
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Distinguishing between MicroRNA Targets from Diverse Species using Sequence Motifs and K-mers</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5220/0006137901330139</subfield> <subfield code="2">doi</subfield> </datafield> <controlfield tag="001">45187</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">A disease phenotype is often due to dysregulation of gene expression. Post-translational regulation of protein abundance by microRNAs (miRNAs) is, therefore, of high importance in, for example, cancer studies. MicroRNAs provide a complementary sequence to their target messenger RNA (mRNA) as part of a complex molecular machinery. Known miRNAs and targets are listed in miRTarBase for a variety of organisms. The experimental detection of such pairs is convoluted and, therefore, their computational detection is desired which is complicated by missing negative data. For machine learning, many features for parameterization of the miRNA targets are available and k-mers and sequence motifs have previously been used. Unrelated organisms like intracellular pathogens and their hosts may communicate via miRNAs and, therefore, we investigated whether miRNA targets from one species can be differentiated from miRNA targets of another. To achieve this end, we employed target information of one species as positive and the other as negative training and testing data. Models of species with higher evolutionary distance generally achieved better results of up to 97% average accuracy (mouse versus Caenorhabditis elegans) while more closely related species did not lead to successful models (human versus mouse; 60%). In the future, when more targeting data becomes available, models can be established which will be able to more precisely determine miRNA targets in hostpathogen systems using this approach.</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="2">opendefinition.org</subfield> <subfield code="a">cc-by</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Coll Sakhnin, Comp Sci, IL-30810 Sakhnin, Israel</subfield> <subfield code="a">Khalifa, Waleed</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Izmir Inst Technol, Biotechnol, TR-35430 Izmir, Turkey</subfield> <subfield code="a">Acar, Ilhan Erkin</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Allmer, Jens</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="b">conferencepaper</subfield> <subfield code="a">publication</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Zefat Acad Coll, Community Informat Syst, IL-13206 Safed, Israel</subfield> <subfield code="a">Yousef, Malik</subfield> </datafield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="a">PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2017-01-01</subfield> </datafield> <controlfield tag="005">20210315213147.0</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:zenodo.org:45187</subfield> <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="z">md5:385ede6f16ebea1e56eef19c4b252ab0</subfield> <subfield code="s">278</subfield> <subfield code="u">https://aperta.ulakbim.gov.trrecord/45187/files/bib-4b84199a-1ae4-4d84-a778-5ad621364251.txt</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> </record>
Görüntülenme | 26 |
İndirme | 11 |
Veri hacmi | 3.1 kB |
Tekil görüntülenme | 25 |
Tekil indirme | 10 |