Dergi makalesi Açık Erişim
Aydm, Dogan; Yavuz, Guecan; Stuetzle, Thomas
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/44185</identifier>
<creators>
<creator>
<creatorName>Aydm, Dogan</creatorName>
<givenName>Dogan</givenName>
<familyName>Aydm</familyName>
<affiliation>Dumlupinar Univ, Dept Comp Engn, TR-43000 Kutahya, Turkey</affiliation>
</creator>
<creator>
<creatorName>Yavuz, Guecan</creatorName>
<givenName>Guecan</givenName>
<familyName>Yavuz</familyName>
<affiliation>Dumlupinar Univ, Dept Comp Engn, TR-43000 Kutahya, Turkey</affiliation>
</creator>
<creator>
<creatorName>Stuetzle, Thomas</creatorName>
<givenName>Thomas</givenName>
<familyName>Stuetzle</familyName>
<affiliation>ULB, CoDE, IRIDIA, Brussels, Belgium</affiliation>
</creator>
</creators>
<titles>
<title>Abc-X: A Generalized, Automatically Configurable Artificial Bee Colony Framework</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2017</publicationYear>
<dates>
<date dateType="Issued">2017-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/44185</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s11721-017-0131-z</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">The artificial bee colony (ABC) algorithm is a popular metaheuristic that was originally conceived for tackling continuous function optimization tasks. Over the last decade, a large number of variants of ABC have been proposed, making it by now a well-studied swarm intelligence algorithm. Typically, in a paper on algorithmic variants of ABC algorithms, one or at most two of its algorithmic components are modified. Possible changes include variations on the search equations, the selection of candidate solutions to be explored, or the adoption of features from other algorithmic techniques. In this article, we propose to follow a different direction and to build a generalized ABC algorithm, which we call ABC-X. ABC-X collects algorithmic components available from known ABC algorithms into a common algorithm framework that allows not only to instantiate known ABC variants but, more importantly, also many ABC algorithm variants that have never been explored before in the literature. Automatic algorithm configuration techniques can generate from this template new ABC variants that perform better than known ABC algorithms, even when their numerical parameters are fine-tuned using the same automatic configuration process.</description>
</descriptions>
</resource>
| Görüntülenme | 50 |
| İndirme | 14 |
| Veri hacmi | 2.2 kB |
| Tekil görüntülenme | 49 |
| Tekil indirme | 14 |