Konferans bildirisi Açık Erişim

Face Recognition under Varying Illumination

Vucini, Erald; Gokmen, Muhittin; Groeller, Eduard


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/41285</identifier>
  <creators>
    <creator>
      <creatorName>Vucini, Erald</creatorName>
      <givenName>Erald</givenName>
      <familyName>Vucini</familyName>
      <affiliation>Vienna Univ Technol, Inst Comp Graph &amp; Algorithms, A-1040 Vienna, Austria</affiliation>
    </creator>
    <creator>
      <creatorName>Gokmen, Muhittin</creatorName>
      <givenName>Muhittin</givenName>
      <familyName>Gokmen</familyName>
    </creator>
    <creator>
      <creatorName>Groeller, Eduard</creatorName>
      <givenName>Eduard</givenName>
      <familyName>Groeller</familyName>
      <affiliation>Vienna Univ Technol, Inst Comp Graph &amp; Algorithms, A-1040 Vienna, Austria</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Face Recognition Under Varying Illumination</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2007</publicationYear>
  <dates>
    <date dateType="Issued">2007-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/41285</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.41284</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.41285</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">This paper proposes a novel pipeline to develop a Face Recognition System robust to illumination variation. We consider the case when only one single image per person is available during the training phase. In order to utilize the superiority of Linear Discriminant Analysis (LDA) over Principal Component Analysis (PCA) in regard to variable illumination, a number of new images illuminated from different directions are synthesized from a single image by means of the Quotient Image. Furthermore, during the testing phase, an iterative algorithm is used for the restoration of frontal illumination of a face illuminated from any arbitrary angle. Experimental results on the YaleB database show that our approach can achieve a top recognition rate compared to existing methods and can be integrated into real time face recognition system.</description>
  </descriptions>
</resource>
24
9
görüntülenme
indirilme
Görüntülenme 24
İndirme 9
Veri hacmi 1.2 kB
Tekil görüntülenme 23
Tekil indirme 9

Alıntı yap