Dergi makalesi Açık Erişim

Nanosecond Motions in Proteins Impose Bounds on the Timescale Distributions of Local Dynamics

Okan, Osman Burak; Atilgan, Ali Rana; Atilgan, Canan


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Atilgan, Ali Rana</subfield>
    <subfield code="u">Sabanci Univ, Fac Engn &amp; Nat Sci, Istanbul, Turkey</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Atilgan, Canan</subfield>
    <subfield code="u">Sabanci Univ, Fac Engn &amp; Nat Sci, Istanbul, Turkey</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">BIOPHYSICAL JOURNAL</subfield>
    <subfield code="v">97</subfield>
    <subfield code="n">7</subfield>
    <subfield code="c">2080-2088</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.bpj.2009.07.036</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Nanosecond Motions in Proteins Impose Bounds on the Timescale Distributions of Local Dynamics</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Okan, Osman Burak</subfield>
    <subfield code="u">Sabanci Univ, Fac Engn &amp; Nat Sci, Istanbul, Turkey</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:38949</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2009-01-01</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/38949/files/bib-6052ef91-907c-4177-9f48-6e2fed75d49e.txt</subfield>
    <subfield code="z">md5:1032cea56e0617ee8580fd54e7c93cc3</subfield>
    <subfield code="s">177</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <controlfield tag="005">20210315200849.0</controlfield>
  <controlfield tag="001">38949</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">We elucidate the physics of protein dynamical transition via 10-100-ns molecular dynamics simulations at temperatures spanning 160-300 K. By tracking the energy fluctuations, we show that the protein dynamical transition is marked by a crossover from nonstationary to stationary processes that underlie the dynamics of protein motions. A two-timescale function captures the nonexponential character of backbone structural relaxations. One timescale is attributed to the collective segmental motions and the other to local relaxations. The former is well defined by a single-exponential, nanosecond decay, operative at all temperatures. The latter is described by a set of processes that display a distribution of timescales. Although their average remains on the picosecond timescale, the distribution is markedly contracted at the onset of the transition. It is shown that the collective motions impose bounds on timescales spanned by local dynamical processes. The nonstationary character below the transition implicates the presence of a collection of substates whose interactions are restricted. At these temperatures, a wide distribution of local-motion timescales, extending beyond that of nanoseconds, is observed. At physiological temperatures, local motions are confined to timescales faster than nanoseconds. This relatively narrow window makes possible the appearance of multiple channels for the backbone dynamics to operate.</subfield>
  </datafield>
</record>
52
9
görüntülenme
indirilme
Görüntülenme 52
İndirme 9
Veri hacmi 1.6 kB
Tekil görüntülenme 47
Tekil indirme 9

Alıntı yap