Dergi makalesi Açık Erişim
Arslan, Ilker; Islak, Umit; Pehlivan, Cihan
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/36735</identifier>
<creators>
<creator>
<creatorName>Arslan, Ilker</creatorName>
<givenName>Ilker</givenName>
<familyName>Arslan</familyName>
<affiliation>Isik Univ, Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Islak, Umit</creatorName>
<givenName>Umit</givenName>
<familyName>Islak</familyName>
<affiliation>Bogazici Univ, Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Pehlivan, Cihan</creatorName>
<givenName>Cihan</givenName>
<familyName>Pehlivan</familyName>
<affiliation>Atilim Univ, Istanbul, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>On Unfair Permutations</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2018</publicationYear>
<dates>
<date dateType="Issued">2018-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/36735</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.spl.2018.05.011</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">In this paper we study the inverse of so-called unfair permutations. Our investigation begins with comparing this class of permutations with uniformly random permutations, and showing that they behave very much alike in case of locally dependent random variables. As an example of a globally dependent statistic we use the number of inversions, and show that this statistic satisfies a central limit theorem after proper centering and scaling. (C) 2018 Elsevier B.V. All rights reserved.</description>
</descriptions>
</resource>
| Görüntülenme | 32 |
| İndirme | 7 |
| Veri hacmi | 840 Bytes |
| Tekil görüntülenme | 25 |
| Tekil indirme | 7 |