Dergi makalesi Açık Erişim

On a Class of Graphs with Large Total Domination Number

Bahadir, Selim; Gozupek, Didem


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/35289</identifier>
  <creators>
    <creator>
      <creatorName>Bahadir, Selim</creatorName>
      <givenName>Selim</givenName>
      <familyName>Bahadir</familyName>
      <affiliation>Ankara Yildirim Beyazit Univ, Dept Math Comp, Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Gozupek, Didem</creatorName>
      <givenName>Didem</givenName>
      <familyName>Gozupek</familyName>
      <affiliation>Gebze Tech Univ, Dept Comp Engn, Gebze, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>On A Class Of Graphs With Large Total Domination Number</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/35289</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.35288</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.35289</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let gamma(G) and gamma(t) (G) denote the domination number and the total domination number, respectively, of a graph G with no isolated vertices. It is well-known that gamma(t) (G) &amp;lt;= 2 gamma(G). We provide a characterization of a large family of graphs (including chordal graphs) satisfying gamma(t) (G) = 2 gamma(G), strictly generalizing the results of Henning (2001) and Hou and Xu (2010), and partially answering an open question of Henning (2009).</description>
  </descriptions>
</resource>
61
9
görüntülenme
indirilme
Görüntülenme 61
İndirme 9
Veri hacmi 1.4 kB
Tekil görüntülenme 57
Tekil indirme 9

Alıntı yap