Dergi makalesi Açık Erişim
Eravci, Bahaeddin; Ferhatosmanoglu, Hakan
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/32509</identifier>
<creators>
<creator>
<creatorName>Eravci, Bahaeddin</creatorName>
<givenName>Bahaeddin</givenName>
<familyName>Eravci</familyName>
<affiliation>Bilkent Univ, Dept Comp Engn, TR-06800 Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Ferhatosmanoglu, Hakan</creatorName>
<givenName>Hakan</givenName>
<familyName>Ferhatosmanoglu</familyName>
</creator>
</creators>
<titles>
<title>Diverse Relevance Feedback For Time Series With Autoencoder Based Summarizations</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2018</publicationYear>
<dates>
<date dateType="Issued">2018-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/32509</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TKDE.2018.2820119</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">We present a relevance feedback based browsing methodology using different representations for time series data. The outperforming representation type, e.g., among dual-tree complex wavelet transformation, Fourier, symbolic aggregate approximation ( SAX), is learned based on user annotations of the presented query results with representation feedback. We present the use of autoencoder type neural networks to summarize time series or its representations into sparse vectors, which serves as another representation learned from the data. Experiments on 85 real data sets confirm that diversity in the result set increases precision, representation feedback incorporates item diversity and helps to identify the appropriate representation. The results also illustrate that the autoencoders can enhance the base representations, and achieve comparably accurate results with reduced data sizes.</description>
</descriptions>
</resource>
| Görüntülenme | 31 |
| İndirme | 11 |
| Veri hacmi | 2.1 kB |
| Tekil görüntülenme | 30 |
| Tekil indirme | 11 |