Dergi makalesi Açık Erişim
Anbar, Nurdagul; Odzak, Almasa; Patel, Vandita; Quoos, Luciane; Somoza, Anna; Topuzoglu, Alev
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Anbar, Nurdagul</dc:creator> <dc:creator>Odzak, Almasa</dc:creator> <dc:creator>Patel, Vandita</dc:creator> <dc:creator>Quoos, Luciane</dc:creator> <dc:creator>Somoza, Anna</dc:creator> <dc:creator>Topuzoglu, Alev</dc:creator> <dc:date>2018-01-01</dc:date> <dc:description>The well-known Chowla and Zassenhaus conjecture, proved by Cohen in 1990, states that if p > (d(2) - 3d + 4)(2), then there is no complete mapping polynomial f in F-p[x] of degree d >= 2. For arbitrary finite fields F-q, a similar non-existence result was obtained recently by Isik, Topuzoglu and Winterhof in terms of the Carlitz rank of f.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/30467</dc:identifier> <dc:identifier>oai:zenodo.org:30467</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>FINITE FIELDS AND THEIR APPLICATIONS 49 132-142</dc:source> <dc:title>On the difference between permutation polynomials</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
| Görüntülenme | 47 |
| İndirme | 7 |
| Veri hacmi | 1.3 kB |
| Tekil görüntülenme | 42 |
| Tekil indirme | 7 |