Dergi makalesi Açık Erişim

Connectivity of intersection graphs of finite groups

Kayacan, Selcuk


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/30191</identifier>
  <creators>
    <creator>
      <creatorName>Kayacan, Selcuk</creatorName>
      <givenName>Selcuk</givenName>
      <familyName>Kayacan</familyName>
      <affiliation>Istanbul Tech Univ, Dept Math, TR-34469 Istanbul, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Connectivity Of Intersection Graphs Of Finite Groups</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/30191</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1080/00927872.2017.1347662</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">The intersection graph of a group G is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of G, and there is an edge between two distinct vertices H and K if and only if H boolean AND K not equal 1 where 1 denotes the trivial subgroup of G. In this paper, we classify finite solvable groups whose intersection graphs are not 2-connected and finite nilpotent groups whose intersection graphs are not 3-connected. Our methods are elementary.</description>
  </descriptions>
</resource>
51
10
görüntülenme
indirilme
Görüntülenme 51
İndirme 10
Veri hacmi 1.2 kB
Tekil görüntülenme 50
Tekil indirme 10

Alıntı yap