Dergi makalesi Açık Erişim

Bohr Hamiltonian for gamma=30 degrees with Davidson potential

Yigitoglu, Ibrahim; Gokbulut, Melek


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/29949</identifier>
  <creators>
    <creator>
      <creatorName>Yigitoglu, Ibrahim</creatorName>
      <givenName>Ibrahim</givenName>
      <familyName>Yigitoglu</familyName>
      <affiliation>Gaziosmanpasa Univ, Fac Arts &amp; Sci, Dept Phys, TR-60250 Tokat, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Gokbulut, Melek</creatorName>
      <givenName>Melek</givenName>
      <familyName>Gokbulut</familyName>
      <affiliation>Gaziosmanpasa Univ, Fac Arts &amp; Sci, Dept Phys, TR-60250 Tokat, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Bohr Hamiltonian For Gamma=30 Degrees With Davidson Potential</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/29949</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1140/epjp/i2018-11969-0</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">A gamma-rigid solution of the Bohr Hamiltonian for gamma = 30 degrees is constructed with the Davidson potential in the beta part. This solution is going to be called Z(4)-D. The energy eigenvalues and wave functions are obtained by using the analytic method developed by Nikiforov and Uvarov. The calculated intraband and interband B(E2) transitions rates are presented and compared with the Z(4) model predictions. The staggering behavior in gamma-bands is considered to search Z(4)-D candidate nuclei. A variational procedure is applied to demonstrate that the Z(4) model is a solution of the critical point at the shape phase transition from spherical to rigid triaxial rotor.</description>
  </descriptions>
</resource>
31
5
görüntülenme
indirilme
Görüntülenme 31
İndirme 5
Veri hacmi 695 Bytes
Tekil görüntülenme 31
Tekil indirme 5

Alıntı yap