Dergi makalesi Açık Erişim
Erman, Fatih; Gadella, Manuel; Uncu, Haydar
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Erman, Fatih</dc:creator> <dc:creator>Gadella, Manuel</dc:creator> <dc:creator>Uncu, Haydar</dc:creator> <dc:date>2018-01-01</dc:date> <dc:description>In this paper, we propose a pedagogical presentation of the Lippmann-Schwinger equation as a powerful tool, so as to obtain important scattering information. In particular, we consider a one-dimensional system with a Schrodinger-type free Hamiltonian decorated with a sequence of N attractive Dirac delta interactions. We first write the Lippmann-Schwinger equation for the system and then solve it explicitly in terms of an N x N matrix. Then, we discuss the reflection and the transmission coefficients for an arbitrary number of centres and study the threshold anomaly for the N = 2 and N = 4 cases. We also study further features like the quantum metastable states and resonances, including their corresponding Gamow functions and virtual or antibound states. The use of the Lippmann-Schwinger equation simplifies our analysis enormously and gives exact results for an arbitrary number of Dirac delta potentials.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/28907</dc:identifier> <dc:identifier>oai:zenodo.org:28907</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>EUROPEAN JOURNAL OF PHYSICS 39(3)</dc:source> <dc:title>On scattering from the one-dimensional multiple Dirac delta potentials</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 53 |
İndirme | 4 |
Veri hacmi | 596 Bytes |
Tekil görüntülenme | 52 |
Tekil indirme | 4 |