Dergi makalesi Açık Erişim
Kosan, Tamer; Sahinkaya, Serap; Zhou, Yiqiang
{
"conceptrecid": "28858",
"created": "2021-03-15T12:41:33.574448+00:00",
"doi": "10.4153/CMB-2017-019-3",
"files": [
{
"bucket": "5b103b71-a666-419d-b140-80c6638382f9",
"checksum": "md5:4fa148d9c03efc080d28cd37ec414317",
"key": "bib-42cc4654-285a-4903-8e3e-886680f3374f.txt",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/5b103b71-a666-419d-b140-80c6638382f9/bib-42cc4654-285a-4903-8e3e-886680f3374f.txt"
},
"size": 159,
"type": "txt"
}
],
"id": 28859,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.4153/CMB-2017-019-3.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/5b103b71-a666-419d-b140-80c6638382f9",
"doi": "https://doi.org/10.4153/CMB-2017-019-3",
"html": "https://aperta.ulakbim.gov.tr/record/28859",
"latest": "https://aperta.ulakbim.gov.tr/api/records/28859",
"latest_html": "https://aperta.ulakbim.gov.tr/record/28859"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"communities": [
{
"id": "tubitak-destekli-proje-yayinlari"
}
],
"creators": [
{
"affiliation": "Gebze Tech Univ, Dept Math, Gebze, Turkey",
"name": "Kosan, Tamer"
},
{
"affiliation": "Gebze Tech Univ, Dept Math, Gebze, Turkey",
"name": "Sahinkaya, Serap"
},
{
"affiliation": "Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada",
"name": "Zhou, Yiqiang"
}
],
"description": "Let R be a ring. A map f: R -> R is additive if f (a + b) = f (a) + f (b) for all elements a and b of R. Here, a map f: R R is called unit-additive if f (u + v) = f (u) + f (v) for all units u and v of R. Motivated by a recent result of Xu, Pei and Yi showing that, for any field F, every unit-additive map of M-n, (F) is additive for all n >= 2, this paper is about the question of when every unit-additive map of a ring is additive. It is proved that every unit-additive map of a semilocal ring R is additive if and only if either R has no homomorphic image isomorphic to Z(2) or R/J(R) congruent to Z(2) with 2 = 0 in R. Consequently, for any semilocal ring R, every unit-additive map of Mn (R) is additive for all n >= 2. These results are further extended to rings R such that R/J(R) is a direct product of exchange rings with primitive factors Artinian. A unit-additive map f of a ring R is called unithomomorphic if f (uv) = f (u)f (v) for all units u, v of R. As an application, the question of when every unit-homomorphic map of a ring is an endomorphism is addressed.",
"doi": "10.4153/CMB-2017-019-3",
"has_grant": false,
"journal": {
"issue": "1",
"pages": "130-141",
"title": "CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES",
"volume": "61"
},
"license": {
"id": "cc-by"
},
"publication_date": "2018-01-01",
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "28859"
},
"parent": {
"pid_type": "recid",
"pid_value": "28858"
}
}
]
},
"resource_type": {
"subtype": "article",
"title": "Dergi makalesi",
"type": "publication"
},
"title": "Additive Maps on Units of Rings"
},
"owners": [
1
],
"revision": 1,
"stats": {
"downloads": 13.0,
"unique_downloads": 13.0,
"unique_views": 51.0,
"version_downloads": 13.0,
"version_unique_downloads": 13.0,
"version_unique_views": 51.0,
"version_views": 52.0,
"version_volume": 2067.0,
"views": 52.0,
"volume": 2067.0
},
"updated": "2021-03-15T12:41:33.624411+00:00"
}
| Görüntülenme | 52 |
| İndirme | 13 |
| Veri hacmi | 2.1 kB |
| Tekil görüntülenme | 51 |
| Tekil indirme | 13 |