Dergi makalesi Açık Erişim

Additive Maps on Units of Rings

Kosan, Tamer; Sahinkaya, Serap; Zhou, Yiqiang


JSON

{
  "conceptrecid": "28858", 
  "created": "2021-03-15T12:41:33.574448+00:00", 
  "doi": "10.4153/CMB-2017-019-3", 
  "files": [
    {
      "bucket": "5b103b71-a666-419d-b140-80c6638382f9", 
      "checksum": "md5:4fa148d9c03efc080d28cd37ec414317", 
      "key": "bib-42cc4654-285a-4903-8e3e-886680f3374f.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/5b103b71-a666-419d-b140-80c6638382f9/bib-42cc4654-285a-4903-8e3e-886680f3374f.txt"
      }, 
      "size": 159, 
      "type": "txt"
    }
  ], 
  "id": 28859, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.4153/CMB-2017-019-3.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/5b103b71-a666-419d-b140-80c6638382f9", 
    "doi": "https://doi.org/10.4153/CMB-2017-019-3", 
    "html": "https://aperta.ulakbim.gov.tr/record/28859", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/28859", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/28859"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Gebze Tech Univ, Dept Math, Gebze, Turkey", 
        "name": "Kosan, Tamer"
      }, 
      {
        "affiliation": "Gebze Tech Univ, Dept Math, Gebze, Turkey", 
        "name": "Sahinkaya, Serap"
      }, 
      {
        "affiliation": "Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada", 
        "name": "Zhou, Yiqiang"
      }
    ], 
    "description": "Let R be a ring. A map f: R -> R is additive if f (a + b) = f (a) + f (b) for all elements a and b of R. Here, a map f: R R is called unit-additive if f (u + v) = f (u) + f (v) for all units u and v of R. Motivated by a recent result of Xu, Pei and Yi showing that, for any field F, every unit-additive map of M-n, (F) is additive for all n >= 2, this paper is about the question of when every unit-additive map of a ring is additive. It is proved that every unit-additive map of a semilocal ring R is additive if and only if either R has no homomorphic image isomorphic to Z(2) or R/J(R) congruent to Z(2) with 2 = 0 in R. Consequently, for any semilocal ring R, every unit-additive map of Mn (R) is additive for all n >= 2. These results are further extended to rings R such that R/J(R) is a direct product of exchange rings with primitive factors Artinian. A unit-additive map f of a ring R is called unithomomorphic if f (uv) = f (u)f (v) for all units u, v of R. As an application, the question of when every unit-homomorphic map of a ring is an endomorphism is addressed.", 
    "doi": "10.4153/CMB-2017-019-3", 
    "has_grant": false, 
    "journal": {
      "issue": "1", 
      "pages": "130-141", 
      "title": "CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES", 
      "volume": "61"
    }, 
    "license": {
      "id": "cc-by"
    }, 
    "publication_date": "2018-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "28859"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "28858"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "title": "Additive Maps on Units of Rings"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 13.0, 
    "unique_downloads": 13.0, 
    "unique_views": 51.0, 
    "version_downloads": 13.0, 
    "version_unique_downloads": 13.0, 
    "version_unique_views": 51.0, 
    "version_views": 52.0, 
    "version_volume": 2067.0, 
    "views": 52.0, 
    "volume": 2067.0
  }, 
  "updated": "2021-03-15T12:41:33.624411+00:00"
}
52
13
görüntülenme
indirilme
Görüntülenme 52
İndirme 13
Veri hacmi 2.1 kB
Tekil görüntülenme 51
Tekil indirme 13

Alıntı yap