Konferans bildirisi Açık Erişim

DIAGNOSIS OF DIABETES DISEASE USING MACHINE LEARNING METHODS IN AN IMBALANCED DIABETES DATASET

İsmail Buğra Bölükbaşı; Betül Yağmahan


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.iksadkongre.net/_files/ugd/262ebf_bea0ec7391e34e8884032d2c83362198.pdf</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Diabetes Diagnosis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Type-2 Diabetes</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Classification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Imbalanced Dataset</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Resampling Methods</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:286136</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In recent years, the number of people with diabetes has been increasing daily. Diabetes is an important&lt;br&gt;
disease that can cause serious damage to the body in the future and even cause death if precautions are&lt;br&gt;
not taken. Early and accurate detection of ever-increasing diabetes is gaining more importance in the&lt;br&gt;
medical world. The number of studies using machine learning methods to diagnose diabetes has&lt;br&gt;
increased significantly in the literature.&lt;br&gt;
In this study, type-2 diabetes disease was classified using different data preprocessing and machine&lt;br&gt;
learning methods on real-world data taken from a public hospital in Turkey. Logistic regression, Naive&lt;br&gt;
Bayes, C4.5, and Random Forest classification models were used in the study. In the classification&lt;br&gt;
models, the patient&amp;#39;s age, gender, complete blood count, biochemistry, and hormone test results were&lt;br&gt;
used as input variables, and the disease diagnosis made by specialist doctors was used as output variable.&lt;br&gt;
In total, 43 different variables were studied. When the dataset was examined, it was noticed that there&lt;br&gt;
was an imbalance between the classes in the target variable. In cases where there is a class imbalance,&lt;br&gt;
the classification models can make incorrect assignments to the classes. To eliminate the class imbalance&lt;br&gt;
in the data set used in the study, three different resampling methods were used: random undersampling&lt;br&gt;
(RUS), random oversampling (ROS), and synthetic minority oversampling (SMOTE).&lt;br&gt;
The performances of four different machine learning methods were compared on each of the original&lt;br&gt;
training dataset, random undersampled training dataset, random oversampled training dataset, and&lt;br&gt;
synthetic minority oversampled training dataset. A total of 16 different scenarios were studied.&lt;br&gt;
As a result of the analysis of all scenarios, four combinations that give the best results were determined.&lt;br&gt;
These are Naive Bayes working with original training dataset, Random Forest working with random&lt;br&gt;
undersampled training and synthetic minority oversampled training datasets, and C4.5 algorithm&lt;br&gt;
working with random oversampled training dataset. The algorithm that takes the first place among the&lt;br&gt;
four scenarios that show the best results is the Random Forest algorithm working with random&lt;br&gt;
undersampled training dataset.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">CUKUROVA 9th INTERNATIONAL SCIENTIFIC RESEARCHES CONFERENCE</subfield>
    <subfield code="d">October 09-11, 2022</subfield>
    <subfield code="c">Adana</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution Share-Alike</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by-sa</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.48623/aperta.286135</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="b">IKSAD Publishing</subfield>
    <subfield code="z">987-625-8246-29-2</subfield>
    <subfield code="t">ABSTRACT BOOK</subfield>
    <subfield code="g">330-331</subfield>
    <subfield code="a">Adana</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-9405-0900</subfield>
    <subfield code="a">İsmail Buğra Bölükbaşı</subfield>
    <subfield code="u">Yalova Üniversitesi</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:7263bbe549773ced2254b23b669f0165</subfield>
    <subfield code="s">270011</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/286136/files/DIAGNOSIS OF DIABETES DISEASE USING MACHINE LEARNING METHODS IN AN IMBALANCED DIABETES DATASET.pdf</subfield>
  </datafield>
  <controlfield tag="005">20250731162101.0</controlfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-10-22</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.48623/aperta.286136</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">DIAGNOSIS OF DIABETES DISEASE USING MACHINE LEARNING METHODS IN AN IMBALANCED DIABETES DATASET</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0003-1744-3062</subfield>
    <subfield code="a">Betül Yağmahan</subfield>
    <subfield code="u">Bursa Uludağ Üniversitesi</subfield>
  </datafield>
  <controlfield tag="001">286136</controlfield>
</record>
0
0
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 00
İndirme 00
Veri hacmi 0 Bytes0 Bytes
Tekil görüntülenme 00
Tekil indirme 00

Alıntı yap