Dergi makalesi Açık Erişim
Karadeniz-Gözeri, G.; Sarı, S.; Akgül, P.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/285956</identifier>
<creators>
<creator>
<creatorName>Karadeniz-Gözeri, G.</creatorName>
<givenName>G.</givenName>
<familyName>Karadeniz-Gözeri</familyName>
</creator>
<creator>
<creatorName>Sarı, S.</creatorName>
<givenName>S.</givenName>
<familyName>Sarı</familyName>
</creator>
<creator>
<creatorName>Akgül, P.</creatorName>
<givenName>P.</givenName>
<familyName>Akgül</familyName>
</creator>
</creators>
<titles>
<title>On Certain Fourth-Order Linear Recursive Sequences</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2025</publicationYear>
<dates>
<date dateType="Issued">2025-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/285956</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3390/ sym17010041</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>In this paper, we introduce a fourth-order linear recursive sequence that is related to the concept of subbalancing numbers. This sequence is constructed by using the third balancing number in the Diophantine equation of subbalancing numbers and is called the sequence of $B_3$-Lucas subbalancing numbers. Motivated by the results for $b_3$-Lucas subbalancing numbers, we obtain several algebraic identities regarding $B_3$-Lucas subbalancing numbers. Furthermore, we derive some algebraic relations between $B_3$-Lucas subbalancing numbers and some other integer sequences</p></description>
</descriptions>
<fundingReferences>
<fundingReference>
<funderName>Türkiye Bilimsel ve Teknolojik Araştirma Kurumu</funderName>
<funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/501100004410</funderIdentifier>
<awardNumber>123F048</awardNumber>
</fundingReference>
</fundingReferences>
</resource>
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |