Dergi makalesi Açık Erişim
Zuernaci-Yetis, Fatma; Disibuyuk, Cetin
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/285649</identifier>
<creators>
<creator>
<creatorName>Zuernaci-Yetis, Fatma</creatorName>
<givenName>Fatma</givenName>
<familyName>Zuernaci-Yetis</familyName>
<affiliation>Istanbul Tech Univ, Dept Math Engn, Maslak, Istanbul, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Disibuyuk, Cetin</creatorName>
<givenName>Cetin</givenName>
<familyName>Disibuyuk</familyName>
<affiliation>Dokuz Eylul Univ, Dept Math, Fen Fak, Tinaztepe Kampusu, Buca, Izmir, Turkiye</affiliation>
</creator>
</creators>
<titles>
<title>Generalized Taylor Series And Peano Kernel Theorem</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2025</publicationYear>
<dates>
<date dateType="Issued">2025-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/285649</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1002/mma.10616</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>As in the polynomial case, non-polynomial divided differences can be viewed as a discrete analog of derivatives. This link between non-polynomial divided differences and derivatives is defined by a generalization of the derivative operator. In this study, we obtain a generalization of Taylor series using the link between non-polynomial divided differences and derivatives, and state generalized Taylor theorem. With the definition of a definite integral, the relation between the non-polynomial divided difference and non-polynomial B-spline functions is given in terms of integration. Also, we derive a general form of the Peano kernel theorem based on a generalized Taylor expansion with the integral remainder. As in the polynomial case, it is shown that the non-polynomial B-splines are in fact the Peano kernels of non-polynomial divided differences.MSC2020 Classification: 65D05, 65D07</p></description>
</descriptions>
</resource>
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |