Dergi makalesi Açık Erişim

A Version of Predicate Logic with Two Variables That has an Incompleteness Property

Khaled, Mohamed


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/280773</identifier>
  <creators>
    <creator>
      <creatorName>Khaled, Mohamed</creatorName>
      <givenName>Mohamed</givenName>
      <familyName>Khaled</familyName>
    </creator>
  </creators>
  <titles>
    <title>A Version Of Predicate Logic With Two Variables That Has An Incompleteness Property</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2024</publicationYear>
  <dates>
    <date dateType="Issued">2024-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/280773</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s11225-024-10124-2</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In this paper, we consider predicate logic with two individual variables and general assignment models (where the set of assignments of the variables into a model is allowed to be an arbitrary subset of the usual one). We prove that there is a statement such that no general assignment model in which it is true can be finitely axiomatized. We do this by showing that the free relativized cylindric algebras of dimension two are not atomic.&lt;/p&gt;</description>
  </descriptions>
</resource>
0
0
görüntülenme
indirilme
Görüntülenme 0
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 0
Tekil indirme 0

Alıntı yap