Dergi makalesi Açık Erişim
Adiyaman, Hilal; Varul, Yunus Emre; Bakirman, Tolga; Bayram, Buelent
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/280761</identifier>
<creators>
<creator>
<creatorName>Adiyaman, Hilal</creatorName>
<givenName>Hilal</givenName>
<familyName>Adiyaman</familyName>
<affiliation>Yildiz Tech Univ, Istanbul, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Varul, Yunus Emre</creatorName>
<givenName>Yunus Emre</givenName>
<familyName>Varul</familyName>
<affiliation>Yildiz Tech Univ, Istanbul, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Bakirman, Tolga</creatorName>
<givenName>Tolga</givenName>
<familyName>Bakirman</familyName>
<affiliation>Yildiz Tech Univ, Istanbul, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Bayram, Buelent</creatorName>
<givenName>Buelent</givenName>
<familyName>Bayram</familyName>
<affiliation>Yildiz Tech Univ, Istanbul, Turkiye</affiliation>
</creator>
</creators>
<titles>
<title>Stripe Error Correction For Landsat-7 Using Deep Learning</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2025</publicationYear>
<dates>
<date dateType="Issued">2025-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/280761</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s41064-024-00306-x</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>Long-term time series satellite imagery became highly essential for analyzing earth cycles such as global warming, climate change, and urbanization. Landsat-7 satellite imagery plays a key role in this domain since it provides open-access data with expansive coverage and consistent temporal resolution for more than two decades. This paper addresses the challenge of stripe errors induced by Scan Line Corrector sensor malfunction in Landsat-7 ETM+ satellite imagery, resulting in data loss and degradation. To overcome this problem, we propose a Generative Adversarial Networks approach to fill the gaps in the Landsat-7 ETM+ panchromatic images. First, we introduce the YTU_STRIPE dataset, comprising Landsat-8 OLI panchromatic images with synthetically induced stripe errors, for model training and testing. Our results indicate sufficient performance of the Pix2Pix GAN for this purpose. We demonstrate the efficiency of our approach through systematic experimentation and evaluation using various accuracy metrics, including Peak Signal-to-Noise Ratio, Structural Similarity Index Measurement, Universal Image Quality Index, Correlation Coefficient, and Root Mean Square Error which were calculated as 38.5570, 0.9206, 0.7670, 0.7753 and 3.8212, respectively. Our findings suggest promising prospects for utilizing synthetic imagery from Landsat-8 OLI to mitigate stripe errors in Landsat-7 ETM+ SLC-off imagery, thereby enhancing image reconstruction efforts. The datasets and model weights generated in this study are publicly available for further research and development: https://github.com/ynsemrevrl/eliminating-stripe-errors.</p></description>
</descriptions>
</resource>
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |