Dergi makalesi Açık Erişim
Egrioglu, Erol; Bas, Eren
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:aperta.ulakbim.gov.tr:280591</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>Deep artificial neural networks have become a good alternative to classical forecasting methods in solving forecasting problems. Popular deep neural networks classically use additive aggregation functions in their cell structures. It is available in the literature that the use of multiplicative aggregation functions in shallow artificial neural networks produces successful results for the forecasting problem. A type of high-order shallow artificial neural network that uses multiplicative aggregation functions is the dendritic neuron model artificial neural network, which has successful forecasting performance. In this study, the transformation of the dendritic neuron model turned into a multi-output architecture. A new dendritic cell based on the multi-output dendritic neuron model and a new deep artificial neural network is proposed. The training of this new deep dendritic artificial neural network is carried out with the differential evolution algorithm. The forecasting performance of the deep dendritic artificial neural network is compared with basic classical forecasting methods and some recent shallow and deep artificial neural networks over stock market time series. As a result, it has been observed that deep dendritic artificial neural network produces very successful forecasting results for the forecasting problem.</p></subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Egrioglu, Erol</subfield>
<subfield code="u">Giresun Univ, Fac Arts & Sci, Dept Stat, Forecast Res Lab, TR-28200 Giresun, Turkiye</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:845d3efd15d6891156d488ebf8a75d53</subfield>
<subfield code="s">166</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/280591/files/bib-894fdac5-a2e1-4fde-9270-da2e489797f7.txt</subfield>
</datafield>
<controlfield tag="005">20250417213748.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2024-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1007/s10462-024-10790-7</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">A new deep neural network for forecasting: Deep dendritic artificial neural network</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="v">57</subfield>
<subfield code="p">ARTIFICIAL INTELLIGENCE REVIEW</subfield>
<subfield code="c">25</subfield>
<subfield code="n">7</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Bas, Eren</subfield>
<subfield code="u">Giresun Univ, Fac Arts & Sci, Dept Stat, Forecast Res Lab, TR-28200 Giresun, Turkiye</subfield>
</datafield>
<controlfield tag="001">280591</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |