Dergi makalesi Açık Erişim
Varli, Hanife; Pamuk, Mehmetcik; Yilmaz, Yagmur
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/275975</identifier>
<creators>
<creator>
<creatorName>Varli, Hanife</creatorName>
<givenName>Hanife</givenName>
<familyName>Varli</familyName>
<affiliation>Cankiri Karatekin Univ, Dept Math, TR-18100 Cankiri, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Pamuk, Mehmetcik</creatorName>
<givenName>Mehmetcik</givenName>
<familyName>Pamuk</familyName>
<affiliation>Middle East Tech Univ, Dept Math, TR-06531 Ankara, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Yilmaz, Yagmur</creatorName>
<givenName>Yagmur</givenName>
<familyName>Yilmaz</familyName>
<affiliation>Univ Toledo, Dept Math & Stat, Toledo, OH USA</affiliation>
</creator>
</creators>
<titles>
<title>Homological Properties Of Persistent Homology</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2024</publicationYear>
<dates>
<date dateType="Issued">2024-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/275975</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S0219498826500374</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>In this paper, we investigate to what extent persistent homology benefits from the properties of a homology theory. We show that persistent homology benefits from a Mayer-Vietoris sequence and a long exact sequence for a pair if one works with graded persistence modules. We also give concrete examples showing that the same is not the case for persistent homology groups.</p></description>
</descriptions>
</resource>
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |