Dergi makalesi Açık Erişim

Event Graph-Based News Clustering: The Role of Named Entity-Centered Subgraphs

Komecoglu, Basak Buluz; Yilmaz, Burcu


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/275735</identifier>
  <creators>
    <creator>
      <creatorName>Komecoglu, Basak Buluz</creatorName>
      <givenName>Basak Buluz</givenName>
      <familyName>Komecoglu</familyName>
      <affiliation>Gebze Tech Univ, Inst Informat Technol, TR-41400 Gebze, Kocaeli, Turkiye</affiliation>
    </creator>
    <creator>
      <creatorName>Yilmaz, Burcu</creatorName>
      <givenName>Burcu</givenName>
      <familyName>Yilmaz</familyName>
      <affiliation>Gebze Tech Univ, Inst Informat Technol, TR-41400 Gebze, Kocaeli, Turkiye</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Event Graph-Based News Clustering: The Role Of Named Entity-Centered Subgraphs</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2024</publicationYear>
  <dates>
    <date dateType="Issued">2024-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/275735</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/ACCESS.2024.3435343</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In an era of exponential growth in online news sources, the need for intelligent digital solutions capable of efficiently analyzing and organizing large amounts of news content has become crucial. This paper presents a graph-based methodology designed to enhance Topic Detection and Tracking (TDT) tasks in natural language processing by efficiently clustering news events into coherent stories. The proposed approach leverages a novel event graph model that captures not only the characteristics of individual news events but also their collective narrative context. Using Named Entity Centred Frequent Subgraphs, the model excels in identifying recurring patterns of events and thus provides a framework for learning a robust, language-independent, and structured representation for structuring news stories, which represents a significant advance in the refinement of traditional clustering algorithms. Empirical experiments using a multilingual benchmark dataset, the News Clustering Dataset, highlight the superior clustering performance of our approach compared to state-of-the-art monolingual document clustering techniques, particularly in English and the competitive results in Spanish. To underline the adaptability of the methodology to low-resource languages, the Turkish 'Story-Based News Dataset' developed specifically for this study also promises to serve as an important resource for a wide range of natural language processing tasks.&lt;/p&gt;</description>
  </descriptions>
</resource>
0
0
görüntülenme
indirilme
Görüntülenme 0
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 0
Tekil indirme 0

Alıntı yap