Konferans bildirisi Açık Erişim
Köse, Utku;
Deperlioğlu, Ömer;
Küçüksille, Ecir Uğur;
Turan, Gökhan
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">yapay zeka</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">derin öğrenme</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">ilaç yeniden konumlandırma</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">karar destek sistemleri</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">artificial intelligence</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">deep learning</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">drug repurposing</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">decision support systems</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="041" ind1=" " ind2=" ">
<subfield code="a">eng</subfield>
</datafield>
<controlfield tag="005">20250310163408.0</controlfield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:8873243278e7ed31ecea941c1d806ecb</subfield>
<subfield code="s">1251571</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/274337/files/IEEE_Combining_DL_for_Imp_Drug_Repurposing.pdf</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="o">oai:aperta.ulakbim.gov.tr:274337</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>Nowadays, major advancements through Artificial Intelligence (AI) were led by Deep Learning-based solutions. Considering their robust and extensive data processing mechanisms, Deep Learning (DL) models ensure great role in advancing solutions for real-world problems. Especially medical applications have been significantly improved by research studies as a result of intensive DL synergy. At this point, drug discovery has been one of the most remarkable fields where DL has been used in especially last few years. In the context of drug discovery studies, drug repurposing has a unique place to enable known drugs to be used for different diseases. As this is a remarkable way of optimizing discovery and treatment phases, use of DL for drug repurposing applications has still open areas to go. Objective of this paper is to examine the potential of combined DL models for improving drug repurposing and introduce a solution methodology, which includes use of multiple DL models to build a decision support system. It has been also aimed to support the system with computational models and Generative AI route to extend the capabilities towards a Digital Twin related approach.</p></subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">conferencepaper</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1109/ICICT60155.2024.10544998</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Combining Deep Learning Models for Improved Drug Repurposing: Advancements and an Extended Solution Methodology</subfield>
</datafield>
<datafield tag="711" ind1=" " ind2=" ">
<subfield code="g">ICICT</subfield>
<subfield code="a">2024 International Conference on Inventive Computation Technologies</subfield>
<subfield code="d">24-26 Nisan 2024</subfield>
<subfield code="c">Lalitpur, Nepal</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution-NonCommercial-NoDerivatives</subfield>
<subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/</subfield>
</datafield>
<controlfield tag="001">274337</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2024-06-07</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">(orcid)0000-0002-7241-5219</subfield>
<subfield code="a">Deperlioğlu, Ömer</subfield>
<subfield code="u">Afyon Kocatepe Üniversitesi</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">(orcid)0000-0002-3293-9878</subfield>
<subfield code="a">Küçüksille, Ecir Uğur</subfield>
<subfield code="u">Süleyman Demirel Üniversitesi</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">(orcid)0000-0002-9698-8986</subfield>
<subfield code="a">Turan, Gökhan</subfield>
<subfield code="u">Burdur Mehmet Akif Ersoy Üniversitesi</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">(orcid)0000-0002-9652-6415</subfield>
<subfield code="a">Köse, Utku</subfield>
<subfield code="u">Süleyman Demirel Üniversitesi</subfield>
</datafield>
</record>
| Görüntülenme | 39 |
| İndirme | 22 |
| Veri hacmi | 27.5 MB |
| Tekil görüntülenme | 22 |
| Tekil indirme | 18 |