Kitap bölümü Kısıtlı Erişim
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">Artificial neural network</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">Convolutional neural network</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">Deep learning</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">Medical image processing</subfield>
</datafield>
<datafield tag="041" ind1=" " ind2=" ">
<subfield code="a">eng</subfield>
</datafield>
<controlfield tag="005">20250228141453.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2024-05-17</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="o">oai:aperta.ulakbim.gov.tr:274319</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>This book chapter explores the integration of machine learning techniques, particularly deep neural networks, in the field of medical image processing for precision medicine. The healthcare industry has accumulated vast amounts of complex data, and advancements in technology have led to an increase in structured and unstructured medical data. The chapter discusses the historical development of image processing techniques, moving from labor-intensive approaches to more efficient and faster operations using artificial neural networks. Various feature extraction methods, with a focus on dimensionality reduction, are investigated to optimize the performance of neural networks. The application of deep neural network models in medical imaging is explored, with a gradual implementation strategy proposed to address challenges related to data variability across institutions. The potential benefits and obstacles of using deep neural network models for psychiatric diagnoses and neonatal early detection are discussed. Throughout the chapter, the importance of effective communication between data scientists, software engineers, and clinicians is emphasized for the development of robust and practical artificial intelligence systems in healthcare. The overall viewpoint highlight how technological advancements in image processing have transformed artificial intelligence-based applications in the medical field and future developments can be looked at in a different light in this area.</p></subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">section</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.48623/aperta.274319</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">restricted</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">The Importance of artificial neural networks in decision making for the field of medicine</subfield>
</datafield>
<controlfield tag="001">274319</controlfield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Okut, Hayrettin</subfield>
<subfield code="u">University of Kansas School of Medicine</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="i">isVersionOf</subfield>
<subfield code="a">10.48623/aperta.274318</subfield>
<subfield code="n">doi</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="b">Nova Science Publishers, Inc.</subfield>
<subfield code="z">979-889113725-7</subfield>
<subfield code="t">The Future of Artificial Neural Networks</subfield>
<subfield code="g">1-24</subfield>
<subfield code="a">New York, USA</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">(orcid)0000-0002-6617-6688</subfield>
<subfield code="a">Abut,Serdar</subfield>
<subfield code="u">Department of Computer Engineering, Siirt University,</subfield>
</datafield>
</record>
| Tüm sürümler | Bu sürüm | |
|---|---|---|
| Görüntülenme | 34 | 41 |
| İndirme | 6 | 6 |
| Veri hacmi | 99.4 MB | 99.4 MB |
| Tekil görüntülenme | 16 | 21 |
| Tekil indirme | 2 | 2 |