Dergi makalesi Açık Erişim

Boyut İndirgeme Teknikleri ve LSTM Derin Öğrenme Ağı İle BIST100 Endeksi Fiyat Tahmini

   Mehmet SARIKOÇ; Mete ÇELİK

Son dönemde teknolojide gözlenen gelişim ile birlikte derin öğrenme yöntemlerinin çok farklı alanlarda kullanımı da hız kazanmıştır. Bu alanların en popülerlerinden biri de finansal piyasalardır. Birçok girdinin etken olduğu finansal veriler üzerinde gerçekleştirilen tahmin ve analizlerin, yatırımcıların ve kurumsal yapıların karar alma mekanizmalarına yardımcı etkisi büyük öneme sahiptir. Çalışmada bir derin öğrenme ağı ile Borsa İstanbul 100 (BIST100) endeksi tahmin edilmeye çalışılmaktadır. Ayrıca veri ön işleme aşamasında Faktör Analizi (FA), Temel Bileşen Analizi (PCA), Bağımsız Bileşen Analizi (ICA) gibi istatistiksel boyut indirgeme yöntemlerin kullanımının, Uzun Kısa Süreli Bellek (LSTM) derin öğrenme ağı performansına olan etkisi araştırılmaktadır. Deneyler esnasında kullanılan veri seti; BIST100 endeksine ait günlük geçmiş verilere ve teknik analiz bilgilerine dayalı olarak hazırlanmaktadır. Veri ön işleme aşamasında, derin öğrenme ağına eklenen istatistiksel boyut indirgeme yöntemlerinden oluşturulan modeller, 5 gün sonraki fiyatı tahmin etmeye çalışırken, R2 ve RMSE ölçütleri üzerinden karşılaştırılmıştır. Bu işlemler sırasında derin öğrenme hiper-parametreleri dışında kalan, teknik göstergelerin ve tahmin modelinin performansını etkiyeceği düşünülen parametreler iyileştirilmeye çalışılmıştır. Buna göre PCA+LSTM hibrit modeli, diğer boyut indirgeme yöntemleri ile oluşturulan hibrit modelleri geride bırakarak daha rekabetçi sonuçlar elde etmiştir. Aynı zamanda PCA+LSTM hibrit modelinin, LSTM modelinin tek başına elde ettiği sonuçları, R2 ve RMSE için sırası ile %4.60 ve %13.35 oranlarında iyileştirdiği görülmüştür.

Dosyalar (1.1 MB)
Dosya adı Boyutu
10.31590-ejosat.1083255-2291644.pdf
md5:a750f664d4e30f9a7a5caa9b9a36b608
1.1 MB İndir
0
0
görüntülenme
indirilme
Görüntülenme 0
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 0
Tekil indirme 0

Alıntı yap