Dergi makalesi Açık Erişim

A Comparative Analysis of Convolutional Neural Network Architectures for Binary Image Classification: A Case Study in Skin Cancer Detection

Korkut, Şerife Gül; Kocabaş, Hatice; Kurban, Rifat


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="n">4</subfield>
    <subfield code="c">2008-2022</subfield>
    <subfield code="v">14</subfield>
    <subfield code="p">Karadeniz Fen Bilimleri Dergisi</subfield>
  </datafield>
  <controlfield tag="005">20250107074225.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:274178</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Korkut, Şerife Gül</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this study, a comprehensive comparative analysis of Convolutional Neural Network (CNN) architectures for binary image classification is presented with a particular focus on the benefits of transfer learning. The performance and accuracy of prominent CNN models, including MobileNetV3, VGG19, ResNet50, and EfficientNetB0, in classifying skin cancer from binary images are evaluated. Using a pre-trained approach, the impact of transfer learning on the effectiveness of these architectures and identify their strengths and weaknesses within the context of binary image classification are investigated. This paper aims to provide valuable insights for selecting the optimal CNN architecture and leveraging transfer learning to achieve superior performance in binary image classification applications, particularly those related to medical image analysis.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution-NonCommercial</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Convolutional Neural Networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Binary Image Classification</subfield>
  </datafield>
  <controlfield tag="001">274178</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Comparative Analysis of Convolutional Neural Network Architectures for Binary Image Classification: A Case Study in Skin Cancer Detection</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2024-12-01</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Kocabaş, Hatice</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Kurban, Rifat</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/274178/files/10.31466-kfbd.1515451-4067332.pdf</subfield>
    <subfield code="s">313031</subfield>
    <subfield code="z">md5:529409b9ab9696aff8667e03d460c922</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.31466/kfbd.1515451</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
25
8
görüntülenme
indirilme
Görüntülenme 25
İndirme 8
Veri hacmi 2.5 MB
Tekil görüntülenme 23
Tekil indirme 8

Alıntı yap