Veri seti Açık Erişim

Dataset and Code for the Article: Predictive Uncertainty in State-Estimation Drives Active Sensing

Karagoz, Osman Kaan; Kilic, Aysegul; Aydin, Emin Yusuf; Ankarali, Mustafa Mert; Uyanik, Ismail


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.48623/aperta.274062</identifier>
  <creators>
    <creator>
      <creatorName>Karagoz, Osman Kaan</creatorName>
      <givenName>Osman Kaan</givenName>
      <familyName>Karagoz</familyName>
      <affiliation>Middle East Technical University</affiliation>
    </creator>
    <creator>
      <creatorName>Kilic, Aysegul</creatorName>
      <givenName>Aysegul</givenName>
      <familyName>Kilic</familyName>
      <affiliation>Middle East Technical University</affiliation>
    </creator>
    <creator>
      <creatorName>Aydin, Emin Yusuf</creatorName>
      <givenName>Emin Yusuf</givenName>
      <familyName>Aydin</familyName>
      <affiliation>Hacettepe University</affiliation>
    </creator>
    <creator>
      <creatorName>Ankarali, Mustafa Mert</creatorName>
      <givenName>Mustafa Mert</givenName>
      <familyName>Ankarali</familyName>
      <affiliation>Middle East Technical University</affiliation>
    </creator>
    <creator>
      <creatorName>Uyanik, Ismail</creatorName>
      <givenName>Ismail</givenName>
      <familyName>Uyanik</familyName>
      <affiliation>Hacettepe University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Dataset And Code For The Article: Predictive Uncertainty In State-Estimation Drives Active Sensing</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2024</publicationYear>
  <subjects>
    <subject>active sensing</subject>
    <subject>weakly electric fish</subject>
    <subject>sensorimotor control</subject>
    <subject>state estimation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2024-11-05</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/274062</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.48623/aperta.274061</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by-sa">Creative Commons Attribution Share-Alike</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Animals use active sensing movements to shape the spatiotemporal characteristics of sensory signals to better perceive their environment under varying conditions. However, the underlying mechanisms governing the generation of active sensing movements are not known. To address this, we investigated the role of active sensing movements in the refuge tracking behavior of &lt;em&gt;Eigenmannia virescens&lt;/em&gt;, a species of weakly electric fish. These fish track the longitudinal movements of a refuge in which they hide by swimming back and forth in a single linear dimension. During refuge tracking, &lt;em&gt;Eigenmannia&lt;/em&gt; exhibits stereotyped whole-body oscillations when the quality of the sensory signals degrades. We developed a closed-loop feedback control model to examine the role of these ancillary movements on the task performance. Our modeling suggests that fish may use active sensing to minimize predictive uncertainty in state estimation during refuge tracking. The proposed model generates simulated fish trajectories that are statistically indistinguishable from that of the actual fish, unlike the open-loop noise generator and stochastic resonance generator models in the literature. These findings reveal the significance of closed-loop control in active sensing behavior, offering new insights into the underlying mechanisms of dynamic sensory modulation.&lt;/p&gt;</description>
    <description descriptionType="Other">This repository contains the MATLAB code and dataset used in the study:
Karagoz, O. K., Kilic, A., Aydin, E. Y., Ankarali, M. M., &amp; Uyanik, I. "Predictive Uncertainty in State-Estimation Drives Active Sensing Behavior."</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>Türkiye Bilimsel ve Teknolojik Araştirma Kurumu</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/501100004410</funderIdentifier>
      <awardNumber>120E198</awardNumber>
    </fundingReference>
  </fundingReferences>
</resource>
109
6
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 109109
İndirme 66
Veri hacmi 4.9 MB4.9 MB
Tekil görüntülenme 7979
Tekil indirme 66

Alıntı yap