Kitap bölümü Açık Erişim
Karaarslan, Enis; Aydın, Doğan
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="005">20240919070203.0</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:aperta.ulakbim.gov.tr:273939</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">MSKÜ</subfield> <subfield code="0">(orcid)0000-0002-3595-8783</subfield> <subfield code="a">Karaarslan, Enis</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>COVID-19 crisis has shown that the World is not ready for such a rapid spread of a virus resulting in a catastrophic pandemic. Effective use of information technologies is one of the key aspects in reducing the <a href="https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/adverse-event">adverse effects</a> of any epidemic or pandemic. Existing <a href="https://www.sciencedirect.com/topics/computer-science/system-management">management systems</a> have failed to fulfill requirements for curbing the rapid spread of the virus. This chapter firstly describes the current solutions by giving real-world examples. Then, we propose an epidemic management system (EMS) that relies on unimpeded and timely information flow between nations and organizations to ensure resources are distributed effectively. This system will use mobile technology, <a href="https://www.sciencedirect.com/topics/engineering/blockchain">blockchain</a>, epidemic modeling, and <a href="https://www.sciencedirect.com/topics/computer-science/artificial-intelligence">artificial intelligence</a> technologies. We used the Multiplatform Interoperable Scalable Architecture (MPISA) model that allows the integration of multiple platforms and provides a solution for scalability and interoperability problems. <a href="https://www.sciencedirect.com/topics/computer-science/open-data">Open data</a> repositories and the MiPasa <a href="https://www.sciencedirect.com/topics/mathematics/blockchain">blockchain</a> are also described. These relevant data can be used to predict the potential future spread of the epidemic. Selecting the correct methods for epidemic modeling is discussed as well. Another challenge is deciding on allocating resources where they are most necessary; we propose deploying <a href="https://www.sciencedirect.com/topics/computer-science/automated-machine-learning">automated machine learning</a> and stochastic epidemic model-based decision <a href="https://www.sciencedirect.com/topics/engineering/support-system">support systems</a> for such purposes. Citizens should not have privacy concerns about the <a href="https://www.sciencedirect.com/topics/computer-science/information-system">information systems</a>. These trust issues and privacy concerns can be solved by using decentralized identity and zero-knowledge proof-based mechanisms. These mechanisms will ensure that users are in control of their data. In this chapter, we also discuss choosing the right <a href="https://www.sciencedirect.com/topics/engineering/machine-learning-method">machine learning method</a>, privacy measures, and how the performance challenges can be addressed. This chapter concludes on a discussion of how we can design and deploy better EMSs and possible future studies.</p></subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="b">Elseiver</subfield> <subfield code="g">25-50</subfield> <subfield code="t">Data Science for Covid-19</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by-nc-sa/4.0/</subfield> <subfield code="a">Creative Commons Attribution-NonCommercial-ShareAlike</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">blokzincir</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">blok zincir</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">blokzinciri</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">blockchain</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Automated machine learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Contact tracing</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Decentralized identity</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">DID</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Decision support system</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Epidemic management</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Epidemic modeling</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">COVID-19</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">MPISA</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Artificial intelligence</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">machine learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">information systems</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">yapay zeka</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">makine öğrenmesi</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">salgın yönetimi</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">pandemi</subfield> </datafield> <controlfield tag="001">273939</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">section</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">An Artificial Intelligence Based Decision Support and Resource Management System for COVID-19 Pandemic</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="2">opendefinition.org</subfield> <subfield code="a">cc-by</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-05-20</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Aydın, Doğan</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="u">https://aperta.ulakbim.gov.trrecord/273939/files/2021-2_An_artificial_intelligence_based_decision_support_and_resource_.pdf</subfield> <subfield code="s">2613212</subfield> <subfield code="z">md5:d9cd23685b9c620eecf456f4bb1434ac</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1016/B978-0-12-824536-1.00029-0</subfield> <subfield code="2">doi</subfield> </datafield> </record>
Görüntülenme | 119 |
İndirme | 20 |
Veri hacmi | 52.3 MB |
Tekil görüntülenme | 108 |
Tekil indirme | 20 |